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Chapter 1

Introduction

Mathematics is intimately involved with computer science in two basic ways.

� Ultimately, computers perform mathematical calculations. This is historically why
computing was developed, (by mathematicians such as Alan Turing).

� Many of the major uses for computers are essentially solving mathematical problems.
Physicists have used computers for a long time to predict results of experiments using
mathematical models, and to analyse data taken during experiments.

Whatever the application, computers ultimately execute algorithms which have been
defined mathematically. The algorithms are translated in to a series of elementary opera-
tions which the computer then performs. In CS1860 you studied aspects of mathematics
which underpin its use as a language for defining algorithms. In this course we focus
mostly on the first point above, studying aspects of mathematics which are fundamental
to the behaviour of computing machines, both ‘real’ computers and idealised machines
such as finite state automata.

Essentially all computers do is read and write binary sequences from memory loca-
tions and perform simple operations such as addition and logic computations. The set
of available arithmetic operations is usually very small, and the operations are usually
primitive. The combination and interpretation of sequences of these operations is what
allows modern computers to achieve enormous computational power and complexity.

In this course we study the representation of numbers and numeric operations, logic
and its role in computation, idealised machines such as finite state automata, elements of
computer hardware and low-level (assembler) programming.

One of the main skills that a computer scientist needs is to be able determine how to
solve a problem in a way that allows a program to do it to be written. A computer has
no ability to ‘think’, it only ‘knows’ what it has been told and it can only execute actions
that it has been given. For example, a compiler is a program which reads in a program
written in some programming language, and outputs a program written in the machine’s
assembly language which has the same meaning. The material in this course underpins
many parts of compiler design and generation.

1.1 Aims

By the end of this course the student should be able to:

� Understand and be able to use binary representations of numbers in a computer.
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� Have an understanding of elementary logic and normal forms.

� Be able to construct logic circuits and switching circuits for logical expressions.

� Have an understanding of MIPS assembly language.

� Be able to write regular expressions to describe sets and construct finite state au-
tomata to recognise regular sets.

� Understand the construction and use of push down automata.

� Have some understanding of the absolute limitations of computers.

1.2 Course outline

Binary representations of numbers. Two’s complement representation. Floating point
representation.
Propositions, logical connectives, truth tables. DNF and CNF. Logical equivalences.
Predicate logic. Logical inference and proof.
AND, OR, NOT, NAND gates. Logic circuits. DNF as sum of minterms. Karnaugh maps.
Full and half adder, ripple carry adder.
N and P type transistors. Cannonical pull-up and pull-down circuits.
MIPS assembly language and SPIM.
Regular expressions, finite state automata, lexical analysis.
Push down automata, Turing machines and the Chomsky hierarchy.
Non-computability.

1.3 Books

These lecture notes underpin the course. Print them out and bring them to lectures. Read
them in advance and annotate them. Also use the Web to find related material.

Towards the end of the course there will be a MIPS lab session with a work sheet. The
Web is a good place to read more about MIPS.

There is no set book for this course, and there is no book which alone covers the
material presented in the course. There are two basic texts which are useful.

1. Kenneth Rosen, Discrete Mathematics And Its Applications, 6th Edition, McGraw-Hill,
2007. ISBN 0-07-113974-5. RHUL Library: 512.23 ROS

2. J. Glenn Brookshear, Computer Science: An Overview, Addison-Wesley, many editions,
last (tenth) 2008. RHUL Library: 001.64 BRO

Other books that you might find useful.

3. Daniel Cohen, Introduction To Computer Theory, second edition, Wiley, 1991. ISBN
0-471-13772-3.

4. Peter Linz, Introduction To Formal Languages And Automata, third edition, Jones and
Bartlett, 2001. ISBN 0-7637-1422-4.

5. John Hopcroft and Jefferey Ullman, Introduction To Automata Theory, Languages And
Computation, Addison Wesley, 1979. ISBN 0-201-02988-X.
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Course organisation

Three lectures per week.

Five advisee tutorials. Each tutorial has an associated compulsory exercise sheet.

The three coursework assignments will count for 10% (split evenly between the three
assignments);

Provisional Examination Rubric:
Answer ALL questions
Time Allowed: 11

2 hours
Calculators NOT Permitted

Attendance requirements

� You are required to attend all lectures and advisor tutorials. This is a College
requirement and we take a register.

� You are required to do all the set assignments and exercise sheets.





Chapter 2

Numbers and computers

First we consider how can we represent numbers inside a computer.

2.1 Using bases

Our number systems tend to be positional with respect to some base. Normally the base
10 system is used, so 137 represents

1× 102 + 3× 101 + 7× 100

Representing numbers this way in a computer is not common, although not impossible.
The 19th century computer designed by Charles Babbage had columns of cog wheels, with
the digits 0 to 9 etched on them. Then each column contains a number represented using
the decimal interpretation, each cog on the column corresponding to a power of 10. You
can see a version of Babbages machine being described and operated at the following site
http://www.youtube.com/watch?v=0anIyVGeWOI

It shows the cogs and how precisely they needed to be made.
Base 10 is not the only base that has been adopted. The Ancient Babylonians (1750

BC) used a sexadecimal system, that is base 60. This is why one hour is divided into 60
minutes and 1 minute into 60 seconds. The advantage of this system is that 60 has lots of
divisors but a disadvantage is that we need to design and remember 60 different symbols,
and the multiplication tables would be large.

Many computer languages use hexadecimal, base 16, with symbols 0,. . . ,9,A,B,C,D,E,F.
Electrical computers lend themselves to a binary, base 2, system because 0 and 1 can

be represented by ‘on’ and ‘off’. Historically this has been done via relays, vacuum tubes,
transistors and voltages on integrated circuits. You can see vacuum tube memory on the
Bletchley Park rebuild of the Colossus machine
http://en.wikipedia.org/wiki/File:ColossusRebuild\_11.jpg

http://en.wikipedia.org/wiki/File:Colossus.jpg

The numbers 0 and 1 are called the binary digits, and may be referred to as bits. The
term bit was introduced by John Tukey, an American statistician and computer scientist,
in 1946. (Binary would have been much more expensive for Babbage, needing many more
cogs and columns.)

There are many methods that have been used to implement bits. In magnetic storage
devices (Hard Rigid Disk, Floppy, Zip, Tape, etc.) magnetized areas of the media are
used to represent binary numbers: a magnetized area stands for 1, and the absence of
magnetization means 0. Flip-flops are electronic devices that can only carry two distinct
voltages at their outputs, traditionally 0 and 5 volts. They can be switched from one state
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to the other state by an impulse. Optical and magneto-optical storage devices use two
distinct levels of light reflectance or polarization to represent 0 or 1.

The ideas and results covered in this course apply to all methods of representing bits,
we abstract away from the hardware details.

2.2 Binary numbers

2.2.1 Positional representations

Recall that decimal numbers are written positionly, using coefficients of powers of 10.

137 = (1× 100) + (3× 10) + (1× 7)

Similarly, binary numbers are sequences of 0s and 1s, interpreted as coefficients of
powers of 2, with the highest power to the left.

11010 = (1× 24) + (1× 23) + (0× 22) + (1× 21) + (0× 20) = 26

It is usually easiest when converting long binary numbers to decimal number to start
from the right rather than the left.

11010 = (0× 20) + (1× 23) + (0× 22) + (1× 23) + (1× 24) = 26

The value of the expression is the same, the left-most binary digit still corresponds to the
highest power of 2, we have just written the powers out in the opposite order.

Of course decimal 11 (that is base 10) is a different value to binary 11 (base 2), which
is decimal 3. So it is important to know the base. If there is any possibility of confusion
we write the base as a subscript. So 112 is binary 11, which has decimal value 3.

We carry this notation over to equality statements, so we write
112 = 3 or even 112 = 310

Another example:

11101 = (1× 24) + (1× 23) + (1× 22) + (0× 21) + (0× 20) = 29

111012 = 29 or 111012 = 2910

Exercise Write (i) 100102 and (ii) 1100102 in decimal form.

Here are the first 32 binary integers.

0: 0 8: 1000 16: 10000 24: 11000

1: 1 9: 1001 17: 10001 25: 11001

2: 10 10: 1010 18: 10010 26: 11010

3: 11 11: 1011 19: 10011 27: 11011

4: 100 12: 1100 20: 10100 28: 11100

5: 101 13: 1101 21: 10101 29: 11101

6: 110 14: 1110 22: 10110 30: 11110

7: 111 15: 1111 23: 10111 31: 11111



Binary numbers 7

2.2.2 Padding with leading zeros

It does make sense to write decimal numbers in the form, say, 004502, with zeros to the
left. However, this is rarely done. There are some exceptions though, 007 is very well
known and hotel rooms are sometimes number 01, 02 etc, if they are on the ground floor.

The opposite is true for binary numbers. When used in hardware, binary integers tend
all to have the same length, achieved by packing with zeros from the left.

0: 00000 8: 01000 16: 10000 24: 11000

1: 00001 9: 01001 17: 10001 25: 11001

2: 00010 10: 01010 18: 10010 26: 11010

3: 00011 11: 01011 19: 10011 27: 11011

4: 00100 12: 01100 20: 10100 28: 11100

5: 00101 13: 01101 21: 10101 29: 11101

6: 00110 14: 01110 22: 10110 30: 11110

7: 00111 15: 01111 23: 10111 31: 11111

Notice, even numbers end with 0 (on the right), odd numbers end with 1.

2.2.3 Finding binary representations

Given a binary number we can find the equivalent decimal representation by adding to-
gether the corresponding powers of 2.

Similarly, given a decimal number we can find the equivalent binary representation by
subtracting powers of 2.

Start by finding the highest power of 2 which is less than or equal to the binary number.
Then subtract this power of 2 from the number to get the remainder. For example, we
convert 13710 to binary as follows.

27 = 128 < 137 < 256 = 28 remainder 137− 128 = 9

Repeat this process on the remainder,

23 = 8 < 9 < 16 = 24 remainder 9− 8 = 1 = 20

Carry on in this way until the remainder is a power of 2.

137 = 128 + 9 = 128 + 8 + 1
= (1× 128) + (0× 64) + (0× 32) + (0× 16) + (1× 8) + (0× 4) + (0× 2) + (1× 1)
= 100010012

Another example:

1000 = 512 + 488 = 512 + 256 + 232 = 512 + 256 + 128 + 104
= 512 + 256 + 128 + 64 + 40 = 512 + 256 + 128 + 64 + 32 + 8
= 11111010002

Exercise Write (i) 97 and (ii) 232 in binary form.
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2.2.4 Using binary numbers - counting

Binary numbers can be used like decimal ones.

� Counting in decimal:
0, 1, 2,. . . , 9, 10, 11,. . . , 19, 20, 21,. . . , 99, 100, 101,. . .

� Counting in binary:
0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100,. . .

In both cases it is the same rule: as a digit reaches its maximum allowable value, it
becomes 0, and the digit to its left is incremented by 1 (recursively).

Exercise Write down the next four numbers in the binary series.

2.2.5 Using binary numbers - arithmetic

Binary numbers add and multiply together in the same way as decimal numbers. We have

20 + 20 = 1 + 1 = 21 so 12 + 12 = 102

3 = 2 + 1 = 21 + 20 so 102 + 12 = 112

5 = 2 + 3 = 21 + 21 + 20 so 102 + 112 = 1012

In general we add and multiply binary numbers using position and carry from the left, as
for decimal numbers.

101

------

1000110 1111001 1011 101 | 11001

+ 110011 - 110011 x 101 -101

------- ------- ---- ---

1111001 1000110 1011 101

101100 -101

------ ---

110111 0

The following are the addition and multiplication table for the binary digits.

Addition table:

+ 0 1

0 0 1
1 1 10

Multiplication table:

× 0 1

0 0 0
1 0 1

Exercises Carry out the following operations:

� 101110012 + 110011012

� 110111002 − 11101112

� 11102 × 11012

� 1110012/1012 (with remainder)
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2.2.6 Binary is not the only way

It is natural, as we have discussed, to interpret a string of numbers positionly and compute
its value relative to some base. So 11011002 is thought of as representing sums of powers
of 2. However, this is not the only possibility, even for electronic machines built of cells
which have just two states ON/OFF.

An alternative representation, which was used by some IBM machines, is called the
2-of-5 code. In this representation decimal digits are represented by binary sequences of
length 5, exactly two of which are 1s.

There are several systems, for example in the IBM version

11000 is 1 10010 is 3 00110 is 5 01001 is 7 00011 is 9

10100 is 2 01010 is 4 10001 is 6 00101 is 8 01100 is 0

Using this, a binary string represents a decimal, base 10, number.

110001001001001 = 11000 10010 01001 = 137

Although modern computers don’t use this representation, it has the advantage of
error detection. In the binary representation, every string represents a number, so if there
is data corruption this cannot be detected. If one of digits in a 2-of-5 code element is
corrupted then the result will be a non-code element and the system will detect the error.

Binary systems can be made to detect one error by the introduction of a check bit,
but this is less powerful than 2-of-5 detection which can identify which decimal digit
contains the error. Of course the implementation of addition and multiplication using the
2-of-5 representation is more complicated than the add-and-carry method for positional
representations.

2.3 Signed binary numbers

The numbers we have discussed so far are “unsigned integers”: non-negative integer num-
bers. Variables of such types can be declared in C (and by extension in C# and C++) but
not in Java. We need to be able to represent negative numbers, and indeed non-integer
numbers such as fractions.

2.3.1 Bounded size

There is no upper bound on the size of an integer but computers are finite so there is a
limit on the size of number they can represent. In practice the number of digits which is
used to represent a number, the word size, is specified. If the word size is 32, numbers are
32 digits long. Modern general purpose computers are typically 32-bit or 64-bit, but 16-bit
machines are used and embedded systems often have other word sizes. For the examples
in this course we will use small word lengths to allow readable examples.

2.3.2 Words and bytes

As we have said, a computer’s memory is usually divided into words typically 16, 32, or 64
bits. The largest number that a 64-bit word can hold using positional base-2 representation
is 264 − 1.

Sometimes a word is holding several numbers, for example when the word is repre-
senting a machine instruction, and sometimes a number is represented using two or more
words (allowing larger numbers to be represented on smaller word length machines).

A common sub-word size is 8 bits, called a byte. There are 28 = 256 bytes.
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00000000 is 0 11111110 is 254

00000001 is 1 11111111 is 255

The largest unsigned byte number is 255 = 28 − 1.
It will often be convenient to talk about half-bytes (4 bits), e.g binary 1111 is decimal 15.

Exercise Write down all possible 4-bit strings and the unsigned integers they represent.

In Java we can explicitly specify certain types of integer representation, the default int

uses 32 bits, byte only uses 8 bits, and short uses 16 bits, both of which save memory at
the expense of restricting the size of integer that can be used. The data type long uses
64 bit integer representation, allowing larger values than are possible with int but with
an efficiency impact in a 32 bit environment.

This is not a full specification of the integer data types, as we need to have negative
as well as positive integers. For bytes this usually means having -8 to 7 rather than 0 to
15.

We now consider several possible representations which permit negative numbers.

2.3.3 Sign-magnitude representation

One way to represent negative numbers is to store the sign of a number as an additional
piece of information. This corresponds to our usual mathematical notation, +3 and −102
etc. There are only two signs, - and + so one of the bits, usually the left-most, can be used
for the sign. The remainder of the binary sequence then represents the absolute value of
the number.

The usual convention is to use 0 for + and 1 for −. For example, in an 4-bit represen-
tation, 3 is represented as 0011 and −2 is represented as 1010.

There are two particular disadvantages of the sign-magnitude representation:

� it is somewhat complicated to define arithmetic operations (the left-most bit plays
a special role)

� there are two representations of 0 (+0 is represented as 0000 and −0 is represented
as 1000)

2.3.4 Excess representation

The excess representation uses modular arithmetic interpretations of numbers. For exam-
ple, -1 is 7 modulo 8. The fist bit is used to say whether the number is the actual number,
when the first bit is 1, or its negative modular equivalent, when the first bit is 0.

For example, 1111 corresponds to 7 and 0111 corresponds to −1, which is the same as
7 modulo 8.

Here is a full list of the excess representation for 4-bit numbers. For the sequences
beginning with 1 the interpretation is the same as for the signed bit representation.
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Bit pattern Signed integer value (excess notation)

0000 −8
0001 −7
0010 −6
0011 −5
0100 −4
0101 −3
0110 −2
0111 −1
1000 0
1001 1
1010 2
1011 3
1100 4
1101 5
1110 6
1111 7

Note: in our representation the bias is 0, so 0 = 10 . . . 0. In some versions the bias is 1, so
1 = 10 . . . 0.

If we write the bit strings in alphanumeric order as above then 0 will be the bit string
just below the middle, with the positive numbers below in ascending order and the negative
above in decreasing order.

Of course, we can use the excess representation for any number, K, of bits. For a binary
sequence of K bits, first remove the leading (left-most) bit. Transform the remaining bits
into the correspondong decimal number, n say. If the original leading bit was 1 then the
final decimal number is n. If the original leading bit was 0 then the final decimal number
is n− 2K−1. So

1bK−2 . . . b1b0 = (bK−2 . . . b1b0)2 0bK−2 . . . b1b0 = (bK−2 . . . b1b0)2 − 2K−1

For 101001 we have 01001 so n = 23 + 20 = 9, and the final decimal is 9.

For 011111 we have 11111 so n = 24 + 23 + 22 + 21 + 20 = 31 and the final decimal is
n− 25 = 31− 32 = −1. Notice, −1 ≡32 31.

For 001101 we have n = 011012 = 13 so the final decimal number represented is
13− 32 = −19.

In reality the representation is a form of modular arithmetic in which bKbK−1 . . . b1b0
represents (bKbK−1 . . . b1b0)2 − 2K−1.

2.3.5 Two’s complement notation

Although the excess representation avoids the wasted double representation of 0, it still
has the issue that the representation is somewhat unnatural and arithmetic is not simple
modular arithmetic. An alternative is to take the modular arithmetic representation to
its natural conclusion and use the negative number equivalents of half the numbers.

We describe this first for 4-bit numbers. In the natural power-of-2 based representation,
11012 = 23 + 22 + 20 = 13. In two’s complement it represents −3, which is the same as 13
modulo 24 = 16. In general the first half of the binary numbers represent themselves and
the second half represent an equivalent negative number modulo 16.
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Bit pattern Signed integer value (two’s complement notation)

0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 −8
1001 −7
1010 −6
1011 −5
1100 −4
1101 −3
1110 −2
1111 −1

For bits strings of length K, the two’s complement representation is defined as follows:
If the left-most bit is 0 then the number is the usual binary representation. This gives the
numbers from 0 to 2K−1 − 1.
If the left-most bit is 1 then the number is (usual binary representation)−2K . This gives
the numbers from −2K−1 to −1.

Formally, for a bit string bK−1 . . . b1b0, the number represented is

bK−12
K−1 + . . .+ b12

1 + b02
0, if bK−1 = 0 and

(bK−12
K−1 + . . .+ b12

1 + b02
0)− 2K , if bK−1 = 1

Equivalently
0bK−2 . . . b1b0 = (0bK−2 . . . b1b0)2 = (bK−2 . . . b1b0)2
1bK−2 . . . b1b0 = (1bK−2 . . . b1b0)2 − 2K = (bK−2 . . . b1b0)2 − 2K−1

Notice, you can tell the sign of a two’s complement number from its leading, left-most,
bit. But the sign is + if this bit is 0 and − if the bit is 1, the opposite of the case for the
excess representation.

Since 2K = 0 modulo 2K , the negation of x is y where x+y = 2K . In two’s complement,
if y ≥ 2K−1 then we take it to be −x instead. For example, 21 + 43 = 26 so in a 6-bit
representation 101011 represents -21 rather than 43.

So to find the decimal version of a number in two’s complement representation when
the left-most digit is 1, start at the left and invert all the digits before the last (right-most)
1 and then take the negation of the decimal version of the result.

Finding negations

There are three simple ways of finding the negation of a number represented using two’s
complement. For the last two, negations are found by inverting (complementing mod 2)
the bits.

� for a K-bit number, subtract the number from 2K

� invert all the bits from the left up to, but excluding, the right-most 1

� invert all the bits and then add 00. . . 001 to the result
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The first method works by modular arithmetic.

To see that the second method works note that, for any binary number of length K,
swapping all the bits up to but excluding the right-most 1, and adding the two numbers
gives 2K .

1111 + 0001 = 10000

01010101 + 10101011 = 100000000

0101010 + 1010110 = 10000000

One significant advantage of two’s complement is that subtraction can easily be imple-
mented using bit inversion and addition. With the second method of negation we get

3− 5 becomes 0011− 0101 which is
0011 + (−0101) = 0011 + 1011 = 1110 = −(0010) = −2

For the third method of negation above, consider a bit string bK . . . bi+1bi . . . b1 where
bi is the left-most 1. We have

bK . . . bi+1011 . . . 1 + 0 . . . 01 = bK . . . bi+1100 . . . 0

Inverting all the bits gives bK . . . bi+101 . . . 1. Adding 00 . . . 01 gives bK . . . bi+110 . . . 0 which
is the string constructed according to method 2. So we can also find negations of numbers
by inverting all the bits then adding 0. . . 01, allowing subtraction to be implemented using
full inversion and then two additions, rather than testing for the rightmost 1.

3− 5 is 0011 + (−0101) = 0011 + 1010 + 0001 = 1110 = −(0010) = −2

Two’s complement arithmetic

We define addition and multiplication in two’s complement numbers as though they were
unsigned numbers, i.e. positionly.

3 + 2 = 0011 + 0010 = 0101 = 5

In fact this gives us +, − and ∗ modulo 2n.

3 + 8 = 0011 + 1000 = 1011 = −5 (= 11 mod 16)

Modular arithmetic was introduced in CS1860. Two integers a and b are equivalent
mod 2n if 2n divides a − b. Non-negative numbers are equivalent mod 2n if their binary
representations, padded with leading 0s, have the same last n bits.

We define +, − and ∗ as for unsigned numbers.
4 + 3 = 0100 + 0011 = 0111 = 7 2 + (−5) = 0010 + 1011 = 1101 = −3
5− 2 = 0101− 0010 = 0011 = 3 7 + 3 = 0111 + 0011 = 1010 = −6(= 10mod16)
−3×−2 = 1101× 1110 = 11010 + 110100 + 1101000 = 1110110 = 0110 = 6
This is arithmetic modulo 2n.

Here is a comparison of the three representations for 4-bit numbers.
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Bits Sign-magnitude Excess Two’s complement bit inversion

0000 0 −8 0
0001 1 −7 1
0010 2 −6 2
0011 3 −5 3
0100 4 −4 4
0101 5 −3 5
0110 6 −2 6
0111 7 −1 7
1000 0 0 −8 1000
1001 −1 1 −7 0111
1010 −2 2 −6 0110
1011 −3 3 −5 0101
1100 −4 4 −4 0100
1101 −5 5 −3 0011
1110 −6 6 −2 0010
1111 −7 7 −1 0001

Exercise Suppose n = 6. What is the two’s complement representation of
(i) 27 and (ii) −23?

What number is represented by 110100 in the two’s complement notation?

2.4 Ranges and overflow

Suppose we have n bits to store an integer.

For two’s complement notation

� The largest positive value that can be stored is 011 . . . 112 (with n− 1 ones), which
is (10 . . . 002)− 1 (with n− 1 zeros), which is 2n−1 − 1.

� The largest absolute value of a negative number that can be stored is 10 . . . 002 (with
n− 1 zeros), which is 2n−1.

So the range is from −2n−1 to 2n−1 − 1.

For unsigned n-bit integers the range is 0 to 2n − 1.

For excess notation n-bit integers the range is −2n−1 to 2n−1 − 1.

For sign magnitutde notation n-bit integers the range is −2n−1 + 1 to 2n−1 − 1.

The following table shows the ranges for four integer data types in Java.

Name Size Range

byte 1 −128 . . . 127

short 2 −32, 768 . . . 32, 767

int 4 −2, 147, 483, 648 . . . 2, 147, 483, 647

long 8 −9, 223, 372, 036, 854, 775, 808 . . . 9, 223, 372, 036, 854, 775, 807

The second column is the size in bytes, the third column are the top and bottoms of
the ranges, written as decimal numbers, 128 = 28; 32, 768 = 216; 2, 147, 483, 648 = 232;
9, 223, 372, 036, 854, 775, 808 = 264.
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We say that an integer is in range if it is in the range determined by the given represen-
tation. Every integer in the range is the value of some bit pattern.

2.4.1 Overflow

Overflow occurs if the result of an arithmetic operation is outside the range of numbers
which can be represented in the chosen representation. For example, in an unsigned 5-bit
representation the largest number available is 25−1 = 31 so adding 23 and 12 will cause an
overflow. For a 5-bit signed representation the range is −16 to 15 so 8 + 10 and (−4)− 13
will cause overflow but 4− 13 will not.

In general, for an n-bit representation, if the result of an operation on two numbers
is outside the range which can be represented the right-most n bits will be kept and the
remaining left-most bits will be discarded. As a result the calculation will give a result in
the range, but it will not be what was expected.

Example In a 4-bit unsigned representation, adding 0101 (i.e. 5) and 1100 (i.e. 12) gives
10001 which is stored as 0001, i.e. 1 rather than 17.

For two’s complement the range of numbers which can be represented is −2n−1, . . . , 2n−1−
1. For n = 4, in two’s complement 1100 represents −4 so 0101 + 1100 represents 5 + (−4)
and the answer 0001 = 1 is correct, and within the range −8 to 7. Thus overflow has not
occurred.

However, in two’s complement, 0100 + 0101 represents 4 + 5 = 9 which is out of range.
The result is 1001, which represents −7 (this is 9 mod 16), and 4 + 5 = −7 is not usually
what the programmer expects.

Even negating a two’s complement number can lead to an overflow if the number is at
the bottom of the range. If we negate 1000 (i.e. −8) we again obtain 1000 (i.e. −8).

Overflow and its consequences are thus an important issue, requiring knowledge of the
number representation being used, and programmers must write their programs accord-
ingly. This is sometimes referred to as ‘dealing with potential overflow’.

The importance of the need to understand and allow for overflow is illustrated by the
crash of Arianne 5 Flight 501. The programmers neglected to correctly allow for overflow
when some code was converted from 64-bit floating point format to 16-bit signed integer
format. This is one of the most expensive software bugs ever.

2.5 Representing real numbers

We can express many fractional numbers using a decimal point. In the standard base 10
number system digits to the right of the decimal point are coefficients of negative powers
of 10.

37.687 = (3× 10) + (7× 100) + (6× 10−1) + (8× 10−2) + (7× 10−3)

We can do the same thing with binary numbers

01101.011 = (0×24)+(1×23)+(1×22)+(0×21)+(1×20)+(0×2−1)+(1×2−2)+(1×2−3)

= 8 + 4 + 1 +
1

4
+

1

8
= 13.375

The issue is that with a binary string representation, how do we know where the
‘decimal point’ is?
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One possibility is to simply assert that, say, the point is before the last four digits. So
11011010=1101.1010. This is called fixed point notation.

However, this gives the same degree of ‘precision’ to all numbers. If we are measuring,
say, distances then a few 100 miles here or there when talking about the distance away of
objects in our solar system is less important than even half or quarter of a mile if we are
carrying a heavy load from the shops. In other words, we may want the level of precision
to reflect the size of the number.

We can write fractional numbers in a standard form with, say, 0 before the decimal
point and a multiplication by a power of 10.

37.687 = 102 × 0.37687

We can do the same thing with base 2.

110.1011 = 23 × 0.1101011

However, we still need to specify the power of 2 and the sign of the number. So, instead
of all the bits being part of the actual number, one bit is used for the sign, some of the
bits are used to define the power of 2, and the remaining bits are taken to represent a
number with the decimal point at the extreme left.

This is a floating-point representation. It has a sign, e.g. +, a base, e.g. base 2, an
exponent, the power to which that base is raised e.g 4, and a nonnegative mantissa, or
significand, the actual number e.g. 0.1011.

number = ± baseexponent ×mantissa

For a binary bit string representation, the first bit corresponds to the sign, 0 for + and
1 for −, then next k digits are the exponent and the rest of the digits are the mantissa.

For 8-bit representations it is usual to take k = 3 and n = 4, for 32-bits we have single
precision in which k = 8 and n = 23 and for 64-bits we have double precision in which
k = 11 and n = 52.

The mantissa is always non-negative but the exponent can be either positive or neg-
ative. We use an unsigned representation for the mantissa, and we shall use the excess
representation for the exponent.

For example, under the floating point representation

01101011 = +2110 × (2−1 + 2−3 + 2−4) = +22 × 11

16
= 2.75

Notice, this gives a different number to the fixed point interpretation.

Examples
00100110: The sign bit is 0, the exponent bits are 010, and the mantissa bits are 0110.
The exponent is given in the excess notation, which means that the actual exponent is
0102−1002 = 2−4 = −2. The mantissa is 0110 with the decimal point at the extreme left,
.0110 (or 0.0110 if you find that easier to read) which is the decimal 1/4+1/8 = 3/8. The
sign bit 0 is interpreted as +. Therefore, the number represented is +2−2× (3/8) = 3/32.

11101100: The sign bit is 1, the exponent bits are 110, and the mantissa bits are 1100. The
exponent is 1102− 1002 = 6− 4 = 2. The mantissa is .1100, i.e. the decimal 1/2 + 1/4 =
3/4. The sign bit 1 means −. Therefore, the number represented is −22 × (3/4) = −3.

Represent +7/2: The sign bit is 0. Then

7

2
= 3 +

1

2
= 21 + 20 + 2−1 = 22 × (2−1 + 2−2 + 2−3)
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so the exponent is 2, which is 110 in excess notation, and the mantissa is 1110 so we get
01101110.

Represent −5/16: The sign bit is 1. Then

5

16
=

1

4
+

1

16
= 2−2 + 2−4 = 2−1 × (2−1 + 2−3)

so the exponent is −1, which is 011 in excess notation, and the mantissa is 1010 so we get
10111010.

Exercise What real numbers are represented by the following bit patterns under the
floating point representation: (i) 01000111 (ii) 10011110

2.6 Further reading

� Brookshear, Chapter 1 (except for the first 2 or 3 sections, depending on the edition)

� A lot of interesting (and advanced) information in
Donald Knuth, The Art of Computer Programming, volume 2 “Seminumerical Al-
gorithms”, Chapter 4 “Arithmetic”. Third edition. Addison-Wesley, 1997





Chapter 3

Propositional Logic

Logic has many applications in computer science. For example, in formal reasoning, the
design and verification of algorithms (which form the basis of all programs), in the design
of logic and switching circuits, in the specification of processes, and in a programming
methodology called logic programming, PROLOG. Of course, logical expressions appear
in programming language constructs after, for examples, if and while statements. In this
course we introduce the basic concepts of propositional and predicate logic, and discuss
the meaning and methods of proof.

Most of the material in this chapter can be found in Sections 1.1, 1.2, 1.3, and 3.1 of
Rosen which you are strongly urged to read.

Logic consists of a set of rules for drawing inferences. We assume that certain state-
ments, called axioms, are true and we have a set of rules for proving consequences of the
axioms.

For example, we could have axioms

Henry VIII was the father of Elizabeth I
Mary Rose was the sister of Henry VIII

and the rule

If (A was the father of B) and (C was the sister of A) then (C was the aunt of B).

Using these rules and axioms we can deduce that Mary Rose was the aunt of Elizabeth I.

In integer arithmetic we have axioms and rules

x+ y = y + x
x+ 0 = x

if A = B then B = A
if (A = B and B = C) then A = C.

Then we can deduce that x = 0 + x.

3.1 Propositions

A proposition is a statement which is either true or false. For example,

CS1870 is a first year course at Royal Holloway.
A comes before B in the English alphabet.

99 > 6
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are all statements. A statement which is true is said to have truth value true, and a false
statement is said to have truth value false. The above statements all have truth value true.

CS1870 is a second year course at Royal Holloway.
A does not come before B in the English alphabet.

6 = 2× 4

are all statements whose truth value is false.

There are propositions which are either true or false, but we don’t know which. For
example,

There are life forms outside of earth’s solar system.
On 1st November 2062 there will be an earthquake in India.

Given any integer N , there are primes p and p+ 2 greater than N.

Logic is concerned with propositions but not with absolute truth values. Axioms are
propositions which are assumed to be true. We use logic to determine consequences of
axioms. We do not prove that the axioms are true, but if the axioms are true then so are
the consequences. For example:

if I miss the train, then I shall be late for work.

I will be late for work will be true if I miss the train, but if I don’t miss the train then I
may or may not be late for work, we can’t tell.

if it is true that for any N , there are primes p and p+ 2 greater than N ,
then there are infinitely many pairs of primes of the form (p, p+ 2).

Goldbach’s conjecture: every even number greater than 2 is the sum of two primes.

If Goldbach’s conjecture is true, we can write 2n in the form p+ q, where p, q are primes.

Exercise Which of these are propositions?
1. I am happy.
2. What is your name?
3. It is false that grass is red.
4. 8 is a prime number.
5. Close the door!
6. If I have a cold, then I sneeze.
7. If 2+2=5 then grass is usually red.
8. Every even number greater than 2 is the sum of two primes.

Some sentences are not propositions because they cannot have a truth value. For example,
9. This sentence is false.

A sentence which cannot be a proposition is called a paradox. We often use P,Q,R etc.
for propositional variables which can have truth value T (true) or F (false).
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3.2 Logical Operations

We can join propositions together to get new propositions. We can construct compound
propositions by applying logical operations (connectives). For example,

Henry V was King of England and 5>3

is a proposition which is true.
We often use letters such as P,Q,R for propositional variables which can have truth

value T (true) or F (false).

There is a set of logical operations which can be used to construct new propositions from
existing ones, and there is a set of rules which determine the truth values of the new
propositions. These connectives are called and , or , and implies . There is also an
operator called not. The standard mathematical notation for these operations is ∧, ∨,⇒,
and ¬ respectively, and the study of these is known as propositional calculus.

We define each operation by stating the truth value of the new proposition in terms of its
components. For convenience these values are given as a truth table. The truth table lists
a value of a compound proposition for all possible values of it components.

NOT, ¬ (negation)

For any proposition P, the truth value of ¬P is the opposite of the truth value of P. Thus
the truth table for ¬ is

P ¬ P

T F
F T

So for example

¬(14>6) is false
¬(Obama is Prime Minister of the UK) is true
¬(Obama has been President of the US) is false

AND, ∧ (conjunction)

P and Q is true if both P and Q are true, and false otherwise.

P Q P ∧ Q

T T T
T F F
F T F
F F F

So for example

2 is an even prime number, i.e. (2 is even)∧(2 is prime) is true
(Jupiter is a planet) and (a week has 7 days) is true

(9.3 is positive)∧(9.3 is an integer) is false

OR, ∨ (disjunction)

P or Q is true if either P or Q is true, and false otherwise.
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P Q P ∨ Q

T T T
T F T
F T T
F F F

So for example

(14>6)∨(4 exactly divides 8) is true
(The moon is made of green cheese)∨(Grass is red) is false

In mathematics, ‘or’ always means inclusive: at least one of, but maybe both. There is a
special operator for exclusive or called xor. We’ll meet this later.

IMPLIES, ⇒ (implication)

This connective is equivalent to the programming language statement ‘if P then Q’. P⇒Q
says that if P is true then Q must be true. So if P is true and Q is false then P⇒Q is
false. The proposition does not say anything about the case when P is false, if P is false
then there is no requirement on Q. So P⇒Q is always true when P is false.

P Q P ⇒Q

T T T
T F F
F T T
F F T

So for example

(9>5) ⇒(240 is an even number)
(4 exactly divides 5) ⇒(14>6) is true

(4 exactly divides 5) ⇒ not(14>6) is true
(The moon is made of green cheese) ⇒ (Grass is red) is true.

Note, this is not the same as cause and effect.

LOGICALLY EQUIVALENT, ⇔ (equal)

This says that P and Q have the same truth value.

P Q P ⇔ Q

T T T
T F F
F T F
F F T

(N is an even number) ⇔ (N is divisible by 2) is true
(N is an odd number) ⇔ (N is divisible by 2) is false

Exercises Given propositions

P = logic is fun
Q = today is Friday
R = the sun is shining
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Express the following as compound propositions:
1. Logic is not fun and today is Friday.
2. Today isn’t Friday, nor is logic fun.
3. Either logic is fun or it’s Friday and the sun is shining.
4. If the sun is shining and it’s not Friday then logic isn’t fun.

Of course, we can build up propositions using several operators. For example,

P ∧ (Q⇒R), ¬(P ∨ (Q ∧ P))

These operations have precedence, ¬ is highest, ∧ and ∨ are equal precedence, and ⇒and
⇔ are of equal and lowest precedence.

We can use truth tables to give the truth values of a complex proposition in terms of its
components.

P Q R Q⇒R P∧(Q⇒R)

T T T T T
T T F F F
T F T T T
T F F T T
F T T T F
F T F F F
F F T T F
F F F T F

Exercises Draw the truth tables for (i)¬P ∨Q, (ii) (R∧¬Q)⇒ ¬P , (iii) P ⇒ (Q∧¬P ),
(iv) (P ⇒ Q) ∧ (Q⇒ P )

In any formal arena, such as engineering, design, computer programming or mathe-
matics, it is important to give a precise definition of the terms being used. We now give
a formal definition of what it means for two propositions to be equal.

Definition Two propositions are equal if they always have the same truth values. We can
use truth tables to prove that propositions are (or are not) equal.

If P and Q have the same truth values, we often say that they are logically equivalent and
write P ⇔ Q.

For example, it is easy to check that both ¬(P∧Q) and (¬P)∨(¬Q) have truth table

P Q

T T F
T F T
F T T
F F T

Thus we have that ¬(P ∧Q)⇔ (¬P ) ∨ (¬Q).

Some propositions are always true. For example,

P Q P∨Q P ⇒(P∨Q)

T T T T
T F T T
F T T T
F F F T
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so we see that P⇒(P∨Q) is always true, as is P∨¬P.

P ¬P P ∨ ¬P

T F T
F T T

Propositions that are always true are called tautologies.

It is also the case that some propositions are always false. For example,

P ¬P P∧ ¬P

T F F
F T F

Propositions that are always false are called contradictions. Propostions which are neither
tautologies or contadictions are contingent.

We complete this introduction to propositional logic by returning to the ‘exclusive or’
operation mentioned above. We expect P xor Q to be true if exactly one of P or Q is
true. So we expect a truth table of the form

P Q P xor Q

T T F
T F T
F T T
F F F

Considering the truth table for (P ∧ ¬Q) ∨ (¬P ∧ Q), we see that, as we might expect

(P ∧ ¬Q) ∨ (¬P ∧ Q) = P xor Q .

P Q (P ∧ ¬Q) (¬P ∧ Q) (P ∧ ¬Q) ∨ (¬P ∧ Q)

T T F F F
T F T F T
F T F T T
F F F F F

3.3 Normal forms

We can write propositional expressions in uniform ways.

3.3.1 Disjunctive normal form

A formula is said to be in disjunctive normal form (DNF) when it is a disjunction (∨) of
conjunctions (∧) of propositional variables or their negations. For example:

(P ∧ ¬Q ∧R) ∨ (¬Q ∧ ¬R) ∨Q

Every expression built up according to the rules of propositional calculus is equivalent
to some formula in disjunctive normal form.

We can construct a DNF for a proposition from its truth table.
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1. For each row whose truth value is true, write down, for each of the propositional
variables Pi in the formula, either Pi if true in row or ¬Pi if false. Then take the
conjunction of these expressions.

2. Repeat 1 for each row in the truth table where the value is true and write down the
disjunction of all the conjunctions.

The result is a formula in DNF which is equivalent to the original formula.
(NB A DNF is not necessarily unique)

Example P ∧ (Q⇒R)

The truth table for this expression is given above.
For the first row, P = Q = R = T so we have P ∧Q ∧R.
The second row is false. For the third row we have P = R = T , Q = F so we have
P ∧ ¬Q ∧R.
For the fourth row we have R = Q = F , P = T so we have P ∧ ¬Q ∧ ¬R.
The other rows are false, so we have

(P ∧Q ∧R) ∨ (P ∧ ¬Q ∧R) ∨ (P ∧ ¬Q ∧ ¬R)

Exercises Find a DNF for (i) P ⇒ (Q ∧ ¬R) (ii) P ⇒ (Q ∧ ¬P )

3.3.2 Conjunctive normal form

A formula is said to be in conjunctive normal form (CNF) when it is a conjunction (∧) of
disjunctions (∨) of propositional variables or their negations. For example:

(¬P ∨Q ∨R ∨ ¬S) ∧ (P ∨Q) ∧ ¬S ∧ (Q ∨ ¬R ∨ S)

Every expression built up according to the rules of propositional calculus is equivalent
to some formula in conjunctive normal form. To construct a CNF of an expression we use
logical equivalences.

3.3.3 Some logical equivalences

Suppose that P , Q and R are propositional expressions. The following logical equivalences
can all be proved using truth tables.

Double negation
¬(¬P )⇔ P

Commutative Laws
P ∨Q⇔ Q ∨ P
P ∧Q⇔ Q ∧ P
Associative Laws
(P ∨Q) ∨R⇔ P ∨ (Q ∨R)
(P ∧Q) ∧R⇔ P ∧ (Q ∧R)

Distributive Laws
P ∨ (Q ∧R)⇔ (P ∨Q) ∧ (P ∨R)
P ∧ (Q ∨R)⇔ (P ∧Q) ∨ (P ∧R)

De Morgan’s Laws
¬(P ∨Q)⇔ ¬P ∧ ¬Q
¬(P ∧Q)⇔ ¬P ∨ ¬Q
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Implication
(P ⇒ Q)⇔ (¬P ∨Q)
(P ⇔ Q)⇔ (P ⇒ Q) ∧ (Q⇒ P )

Excluded middle
P ∨ ¬P ⇔ T

Contradiction
P ∧ ¬P ⇔ F

Idempotence
P ∨ P ⇔ P
P ∧ P ⇔ P

Identity
P ∧ T ⇔ P
P ∨ F ⇔ P

Domination
P ∨ T ⇔ T
P ∧ F ⇔ F

3.3.4 Using logical equivalences to obtain a normal form

The general approach is to rewrite an expression to one that is logically equivalent until
an expression in CNF, or DNF, is constructed.

The following strategy is likely to be helpful when trying to decide which equivalences
to use.

1. Use Implication Laws to eliminate ⇒ and ⇔

2. Use Double Negation and De Morgan to bring ¬ immediately before propositional
variables

3. Repeatedly use distributive laws (and, optionally, other laws) to obtain a normal
form.

Example Using logical equivalences, find a DNF and CNF for Q⇒ (¬P ∧ (Q ∨R)).

Q⇒ (¬P ∧ (Q ∨R)) ⇔ ¬Q ∨ (¬P ∧ (Q ∨R))
⇔ ¬Q ∨ ((¬P ∧Q) ∨ (¬P ∧R))
⇔ ¬Q ∨ (¬P ∧Q) ∨ (¬P ∧R)

This gives a DNF. We can then apply more equivalences

Q⇒ (¬P ∧ (Q ∨R)) ⇔ ¬Q ∨ (¬P ∧ (Q ∨R))
⇔ (¬Q ∨ ¬P ) ∧ (¬Q ∨ (Q ∨R))
⇔ (¬Q ∨ ¬P ) ∧ (¬Q ∨Q ∨R)

to get a CNF. Of course, in this case there is a simpler CNF, ¬Q ∨ ¬P which is also a
DNF.

Exercise Find a DNF and CNF for P ⇒ (Q ∧ ¬R).

If you are not sure whether your answer is correct you can always check by writing out
the truth tables.

Don’t forget, any disjunction (∨) of propositional variables or their negations is both a
DNF and a CNF, and any conjunction (∧) of propositional variables or their negations is
both a DNF and a CNF.
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Exercise Using logical equivalences, show that the following expression is a tautology.
(¬Q ∧ (P ⇒ Q))⇒ ¬P

Sometimes these more general distributive laws are useful:

(A ∧B) ∨ (C ∧D) ⇔ (A ∨ C) ∧ (A ∨D) ∧ (B ∨ C) ∧ (B ∨D)
(A ∨B) ∧ (C ∨D) ⇔ (A ∧ C) ∨ (A ∧D) ∨ (B ∧ C) ∨ (B ∧D)

They follow from the usual distributive laws.

Exercise Using logical equivalences, find DNF and CNF of ¬(P ⇒ Q) ∨ (¬P ∧ ¬Q).

3.4 Practice exercises

1. Assume that P and Q are true propositions, and that R and S are false propositions.
Determine the truth values of

a. P∧Q c. P⇒Q
b. P∨S d. R ⇒ ¬S.

2. Construct the truth table for P ∨ ¬Q, and use it to determine the value of P ∨ ¬Q
when P and Q are both false.

3. Let P be the proposition ‘my umbrella is at home’ and let Q be the proposition ‘it will
rain today’. Describe each of the following propositions in words:

a. P and Q

b. P or Q

c. P ⇒ Q.

4. Identify the propositions in the following sentences, and rewrite the sentences using
mathematical notation.

a. Mary is John’s mother and Michael is six.

b. Mary is not John’s mother or Michael is six.

5. Let P, Q, R be the following propositions

P: John is 5

Q: Michael is 6

R: Mary is John’s mother

Write each of the following sentences in mathematical notation, using P,Q,R and the
logical operators.

a. John is 5, and Mary is not John’s mother.

b. If Michael is 6, then John is 5.

c. If John is not 5, then it is false that Michael is 6.

d. It is false that Mary is John’s mother, and that Michael is 6.

e. Mary is not John’s mother or Michael is not 6.

6. Construct truth tables for the following propositions.

a. ¬(P∧Q) d. (P∧Q)∧R
b. ¬(P∨(Q∧P)) e. P∧(Q∧R)
c. (P ∧ ¬Q) ⇒ F f. R ⇒ (¬P ⇒ Q)

7. Use truth tables to show that (((P∧Q) ∨ ¬P) ∨ ¬Q) is a tautology.

8. Use logical equivalences to show that (((P∧Q) ∨ ¬P) ∨ ¬Q) is a tautology.
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9. Find a DNF and a CNF for (((P∧(Q⇒ R)) ∧ ¬ R) ∨ ¬(Q∧ ¬P)).



Chapter 4

Predicate Logic and Proof

The material on predicates discussed in this chapter can be found in Section 1.3 of Rosen.
So far we have only considered simple propositions involving specific objects. Propo-

sitional logic is not sufficient to express all sentences or arguments. For example, “Pe-
ter likes football” is a proposition which may be true or false, and we can write it as
likes(peter,football). (This is a relation as defined in CS1860.) But how do we write sen-
tences such as
• Everyone likes football
• Some people like cats
• Someone has stolen my car
• Every student is doing some course

And how do we work out whether such sentences are true or false?

4.1 Predicates

To deal with real applications we need to have propositions which make statements about
collections of objects. For example, ‘all integers which are divisible by 4 are even’ and
‘there exists an integer n such that n2 = 36’.
• variables to stand for individual objects
• quantifiers to express how many objects are involved
• domain of discourse to define the range of objects

A statement about a property of an object is called a predicate. We use the notation P (x)
to denote a statement which concerns properties of the object x.

The set of values over which the quantifier ranges is called the domain of discourse.

For “Everyone likes football” and for “Some people like cats” the domain of discourse is
the set of all people. The first sentence means all members of the set like football, the
second is saying at least one of the domain like cats, but not necessarily everyone.

In the following examples the domain of discourse is the set of integers. For example,
we may have

P (n) = ((n divisible by 4) ⇒(n even)),

where n is an integer.

Then we write the statement ‘all integers which are divisible by 4 are even’ as ‘for all
integers n, P (n)’.

Another example: P (n) = (n2 = 36).
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Then we write the statement ‘there is an integer such that n2 = 36’ as ‘there exists an
integer n such that P (n)’.

4.2 Universal and existential quantifiers

There are two cases: P (x) may be true for all choices of x from a particular set, or P (x)
may be true for some choice of x from the set. (The case when P (x) is never true is not
interesting.) There are two symbols, called predicate quantifiers, which are used to denote
these two cases.

Universal quantifier
The symbol ∀, called for all, is used to indicate that a statement applies to all choices

of object.

∀x P (x) – for all x, P (x) is true.

If the domain of discourse is the set of all people, “Everyone likes football” can be written
∀x likes(x, football) or as ∀x (person(x)⇒ likes(x, football)).

More Examples
Domain of discourse: set of all people, “Everyone on the escalator must wear shoes” could
be written ∀x (on escalator(x)⇒ wears(x, shoes)).

Domain of discourse: Z, “All integers which are divisible by 4” could be written ∀n
(divisible(n, 4)⇒ even(n)).

Domain of discourse: set of all cats, “All cats are friendly and have four legs” could be
written ∀x (friendly(x)⇒ has legs(x, 4)).

Exercises For the following suggest a suitable domain of discourse and then express each
as a formula using the universal quantifier:
(i) All horses eat hay
(ii) Dogs have teeth
(iii) The square of an odd number is odd.

Existential quantifier
The symbol ∃, called there exists, is used to indicate that a statement applies to at

least one choice of object.

∃x P (x) – there exists an x such that P (x) is true.

When

P (n) = ((n divisible by 4) ⇒(n even))

then ∀n P (n), is the statement ‘all integers which are divisible by 4 are even’. Strictly
speaking we should include the set that n ranges over, so we would write

∀(integers n)P (n),

but this becomes complicated so it is more usual to state the domain of discourse,

∀nP (n), where n is an integer.

More Examples
Domain of discourse: set of all people, “Some people like cats” could be written ∃x
likes(x, cats).
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Domain of discourse: set of all people, “Someone has stolen my car” could be written ∃x
stolen(x,my car).

Domain of discourse: Z, “Some integer is equal to 42” could be written ∃n (n = 42).

Like all propositions, a predicate may be true or false.
∃xP (x) is true if there is at least one x in the domain of discourse with P (x) is true.
∃xP (x) is false if P (x) is false for all possible values of x.
∀xP (x) is true if P (x) is true for all possible values of x.
∀xP (x) is false if there is at least one value of x for which P (x) is false.

Example If we have P (n) = (n2 = 36) and domain of discourse Z then
∀n P (n) is false
∃n P (n) is true

4.2.1 Proof by existence and counter example

To prove ∀xP (x) is true you have to prove P (x) is true for all x in the domain of discourse.
Techniques such as proof by induction and contradiction can be used for this.

To prove that ∀xP (x) is false you just have to find one value of x in the domain of
discourse for which P (x) is false. This is called a proof by counter example.

To prove that ∃xP (x) is true you just have to find one value of x in the domain of
discourse for which P (x) is true. This is called a proof by existence.

To prove ∃xP (x) is false you have to prove P (x) is false for all x in the domain of
discourse. Again, techniques such as induction and contradiction can be used.

Examples In the following the domain of discourse is Z.
(i) ∃n(n2 = 16) is true, proof by existence n = 4, 42 = 16 is true.
(ii) ∀n(n2 = 4) is false, proof by counterexample n = 1, 12 6= 4.
(iii) ∃n(n2 = 3) is false (but it would be true if the domain of discourse were R). This can
be proved by contradiction using properties of division by primes.

Exercises What is the truth value of the following, given the domain of discourse is Z.
1. ∀n((n is divisible by 4)⇒ (n is even)
2. ∃n(n2 = 4)
3. ∀n(n2 > 0)
4. ∃n(integer(n) ∧ (n2 = 5))
5. ∃y∀x(x+ y = 0)
6. ∀x∃y(x+ y = 0)

4.3 Multiple parameters

What about statements with more than one variable?
“Any dog on the escalator must be carried by somebody”

∀x∃y((on escalator(x) ∧ dog(x))⇒ (person(y) ∧ carried by(x, y)))

Predicates can involve more than one object. For example, the property y = x2. In
this case we write P (x, y). We can then have a quantifier for each object.

∀x∃y P (x, y) ∃y∀x(x2 = y) ∃y∀x(integer(x)⇒ (integer(y) ∧ (x2 = y)))

∃y∀x P (x, y) ∀x∃y(x2 = y) ∀x∃y(integer(x)⇒ (integer(y) ∧ (x2 = y)))
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are the propositions

for all x there exists some y such that, y = x2

there exists some y such that for all x, y = x2

If x, y are integers then the first proposition is true, the second is false.

Exercise Decide whether each of the propositions ∀y∃x P (x, y) and ∃y∃x P (x, y) is true
or false when x, y are integers.

We can also form the negation of predicates, if ¬∀x P (x) is true exactly when ∀x P (x) is
false. In fact we have

¬∀x P (x) = ∃x ¬P (x)
¬∃x P (x) = ∀x ¬P (x).

Exercises Assume the domain of people, and that L(x, y) means “x likes y”, F (x) means
“x can speak French”, and J(x) means “x knows Java”. Write formulas for:
1. Some people don’t like Fred.
2. There is a person who can speak French and knows Java.
3. Some people can speak French but don’t know Java.
4. Everyone can speak French or knows Java.
5. No one can speak French or knows Java.
6. Everyone likes everyone else and themselves.
7. Some people like everyone except themselves.

4.4 n-ary Predicates

Predicates were used in CS1860 to define sets and relations were discussed in detail.
Predicates in CS1860 usually had one variable and relations had two.

For example: odd(x) (meaning that x is an odd number) is a predicate; less(x, y)
(meaning that x < y) is a relation.

Both words are often used in a wider sense, and then the difference between them
disappears. For example, parents(x, y, z) (meaning that x is z’s father and y is z’s mother)
can be referred to as a ternary predicate or a ternary relation.

Generally, an n-ary predicate (also referred to as an n-ary relation), where n is a
positive integer, is a property of n-tuples (x1, . . . , xn).

We use the terms “unary” for a predicate with 1 variable, “binary” for a predicate
with 2 variables, and “ternary” for a predicate with 3 variables.

An atomic sentence in predicate logic has the form predicate name(a1, a2, . . . , an). The
atomic sentence may contain variables, so that if precise objects are supplied for the vari-
ables the sentence becomes a proposition. For example, the atomic sentence “likes(x, football)”
becomes a proposition for a particular x, such as “likes(pete, football)”.

Names such as “pete” used to refer to particular values of variables are constants.

Summary on predicates

We can use predicate symbols such as P , Q, R to represent predicates in formulas. These
symbols are predicate names.
• 1 argument: P (x) is a unary predicate or property e.g., even(n), friendly(x)
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• 2 arguments: P (x, y) is a binary predicate or relation e.g., likes(x, y), divisible(n, 4)
• 3 arguments: P (x, y, z) is a ternary predicate e.g., parents(x, y, z)
• n arguments: P (a1, a2, . . . , an) is an n-ary predicate, with n arguments

4.5 Well formed formulae (wff)

We can use the logical symbols of propositional calculus to build logical expressions from
predicates.

By convention, variables are written using x, y, z and constants are written a, b, c, . . .
We can also use predicate symbols such as P,Q,R. For example:

∀x(P (x)⇒ ∃yQ(x, y))
∃x(P (x) ∧Q(x, c))

The formal definition of a well formed formula (wff) is by structural induction (see
Section 3.3 of Rosen) but for this course it is sufficient to think of a wff as any sentence
constructed using predicates, variables, quantifiers and the logical connectives, ∧, ∨, ⇒
and ¬.

Wff form the basis of predicate calculus, the study of equality of logical expressions.
We consider only first order predicate calculus in which the quantifiers can only range over
variables, not functions.

We have the following logical equivalences for wwfs A and B.

Re-naming:

∀xA(x)⇔ ∀yA(y)
∃xA(x)⇔ ∃yA(y)

Negation:

¬∀xA(x)⇔ ∃x(¬A(x))
¬∃xA(x)⇔ ∀x(¬A(x))

Distributive laws:

∀x(A(x) ∧B(x))⇔ ∀xA(x) ∧ ∀xB(x)
∃x(A(x) ∨B(x))⇔ ∃xA(x) ∨ ∃xB(x))

Convention: ∀ and ∃ have higher precedence than ∧, ∨, ⇒, and ⇔.

Exercises Show that

∀x(P (x) ∧ ¬Q(x))⇔ (∀xP (x) ∧ ¬∃yQ(y))

∃x(P (x)⇒ Q(x))⇔ (∀yP (y)⇒ ∃xQ(x))

4.6 Interpretations

A formula in propositional logic has a truth value associated with each possible truth
value, T or F, of each of its propositional variables. For example, P ⇒ Q is true for
P = T,Q = T , but false for P = T,Q = F .

A mapping from each of the variables to T or F is called an interpretation, and gives
a meaning to the formula.

Similarly formulae in predicate logic have a truth value when we have given values
to all the variables. However, the process of giving an interpretation to a predicate logic
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formula is more complicated.

4.6.1 Interpretations in predicate logic

Consider an interpretation of the formula ∀x∀y(P (x, y)) where the domain of discourse
for both x and y is {sue, ann, john, bill}, and where P is the relation likes and we have

likes = {(sue, john), (john, sue), (sue, ann), (bill, ann), (sue, bill), (ann, sue)}

In logic we often use the terminology

likes(sue, john), likes(john, sue), likes(sue, ann),

likes(bill, ann), likes(sue, bill), likes(ann, sue)

to specify the binary relations likes and the convention is that likes(x, y) = T in the
above cases and likes(x, y) = F for all other combinations of x and y.

The above formula is false under this interpretation because we can find a counter-
example, e.g., x = ann, y = bill

Exercise What is the truth value of ∃x∀y(((x 6= y) ⇒ P (x, y)) ∧ ¬P (x, x)) under the
above interpretation?

Exercises Consider the interpretation: Domain = {margaret, george, tony, harriet}
Predicates:
P = leader, and is true for {george, tony, michael}
Q = likes, and is true for {(george, tony), (tony, george), (michael, tony)}

Find the truth values under this interpretation of:

1. ∃x∃y(Q(x, y) ∧Q(y, x))

2. ∀x(P (x) ∨ ∃yQ(x, y))

3. ∃x∀y(¬Q(x, y) ∧ ¬Q(y, x))

4. ∀x(P (x)⇒ ∃yQ(x, y))

4.6.2 Semantic entailment

Definitions An interpretation which makes a formula A true is a model for A. A formula
which has at least one model is said to be consistent or satisfiable. A formula which
has no models is said to be inconsistent or unsatisfiable. A formula which is true for all
interpretations is said to be valid. A formula which is neither inconsistent nor valid is said
to be contingent.

A formula A semantically entails formula B if and only if every model for A is also a
model for B. That is, any interpretation which makes A true also makes B true.

We write:

A |= B

We can also say that A logically implies B, or B is a logical consequence of A.
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4.7 Inference and proof

A proof is a logical argument which ends with the conclusion that some proposition is
true. We state the assumptions, or hypotheses, and these form the axioms on which the
proof is based. We then use rules to deduce consequences of these axioms, until we get
the required proposition.

In the last section we discussed the idea of the logical consequence of a formula in
logic: A |= B means any interpretation which makes formula A true also makes formula
B true. We can also say that A logically implies B, or B is a logical consequence of A.

We can apply the same idea to a set of formulae: S |= A means that any interpretation
which makes all the formulae in set S true also makes A true. That is: A is semantically
entailed by the set S, A is a logical consequence of S.

4.7.1 Demonstrating logical consequences

In propositional logic, to demonstrate that S |= U , we can construct the truth tables.

Write the truth table with a column for each of the propositions in S and a column
for U and check that that in every row in which all of the propositions in S are true, U is
also true.

Example Show that {P,Q,Q⇒ (R ∨ U),¬R} |= U .

P Q R U R∨U Q⇒(R∨ U) ¬R

T T T T T T F F
T T T F T T F F
T T F T T T T T
T T F F F F T F
T F T T T T F F
T F T F T T F F
T F F T T T T F
T F F F F T T F

The last column is the truth value of the conjunction of propositions in the set S.

Note, we only need the rows for which P = T so we have left the other rows out.
The row in which the LHS propositions are all true is row 3, and for this row U = T , as
required.

Exercise Use truth tables to show that {Q,P ⇒ Q,Q⇒ R} |= (R ∧Q)

4.7.2 Proof using logical inference

Using truth tables for checking large semantic entailments is cumbersome, and for predi-
cate logic it is not possible if the domain of discourse is infinite.

It is often possible to prove semantic entailments by applying inference rules. You
can think of truth tables as showing something is true by looking at every element, while
applying inference rules is using mathematical reasoning to give a proof.

If S is a set of formulae and A is a single formula, then A can be proved from S if A
can be obtained from S by application of sound inference rules.

We write S ` A
We can also say that A can be derived from S, or that S syntactically entails A.

We now describe the inference rules.
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4.7.3 Modus ponens

If we know that a property P implies a property Q, and that P is true then we can deduce
that Q is true.

For example,

� If it is true that when I am at the seaside then I am happy,

� if it is true that I am at the seaside,

then you can deduce that I am happy.

Modus ponens is the inference rule: from (if P then Q) and P , deduce Q.

That is, from hypotheses P ⇒ Q and P , we can infer Q.

We write either
P, P ⇒ Q

Q
or {P, P ⇒ Q} ` Q

In addition to single propositions P and Q, we can have formulae A and B

A,A⇒ B

B

Example Consider the propositions

P = Interest rates increase Q = Mortgage rates increase R = House prices fall

and the hypotheses {P ⇒ Q,Q⇒ R,P}
We can use modus ponens to show that {P ⇒ Q,Q⇒ R,P} ` R

P,P ⇒ Q

Q Q⇒ R

R

We can also write the proof using the ` notation:

{P, P ⇒ Q} ` Q, {Q,Q⇒ R} ` R

4.7.4 Soundness

We only want to use an inference rule if things proved using it are correct in the sense
the if A is proved from S then S |= A. If any formula A which can be derived from a set
S of other formulae using one or more applications of a rule of inference is also a logical
consequence of S, then the rule of inference is said to be sound.

In other words, anything that we derive from S using that rule of inference will be true
for all interpretations which make all the formulae in S true (all models of S).

Definition A sound inference rule R is one for which If S ` A (using R) then S |= A.

We can look at the truth table for P ⇒ Q

P Q P⇒ Q

T T T
T F F
F T T
F F T
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We can see that if P = T and (P ⇒ Q) = T then only row 1 of the table is relevant
and in this row Q = T .

We have shown above that {P ⇒ Q,Q ⇒ R,P} ` R using modus ponens. It can be
checked using truth tables that {P ⇒ Q,Q⇒ R,P} |= R.

4.7.5 Some inference rules

There are lots of sound inference rules.

A

A ∨B

A ∧B
A

A,B

A ∧B

A,A⇒ B

B

¬B,A⇒ B

¬A

A⇒ B,B ⇒ C

A⇒ C

A ∨B,¬A
B

The soundness of each of these inference rules can be shown using truth tables.

4.7.6 Direct proofs with inferences

We can derive a result using any combination of sound inference rules.

Example If I have a cold, I sneeze. If I sneeze, either I have hay-fever or I should stay in
bed. I have a cold and I don’t have hay-fever. So I should stay in bed.

Model this with P = “I have a cold”, Q = “I sneeze”, R = “I have hay fever”, U = “I
should stay in bed”

Show that {P, P ⇒ Q,Q⇒ (R ∨ U),¬R} ` U

P,P ⇒ Q

Q Q⇒ (R ∨ U)

R ∨ U ¬R
U

Exercise Using direct proof by inferences, show that {P ⇒ (Q⇒ R), P ∧Q} ` R
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4.7.7 Proof by contradiction

If we want to show that
S |= A

it is sufficient to show that
S ∪ {¬A} |= ⊥

where ⊥ is a symbol which in this case denotes the truth value FALSE.
If S∪{¬A} |= ⊥ then this means that no row of the truth table for all the propositions

in S ∪{¬A} has all Ts. This means that if a row has Ts in all the columns for S then ¬A
must be F, and hence A is T. So S |= A.

A similar argument shows that the converse is also true, if S |= A then S ∪{¬A} |= ⊥.
So if S ∪ {¬A} 6|= ⊥ then S 6|= A.

So, to prove a result by contradiction, add the negation of what you want to prove to
the hypotheses, and derive an expression which must be false.

We express this as the inference rule

A,¬A
⊥

Example We prove {P, P ⇒ Q,Q⇒ R} |= R∧Q by contradiction. Assuming ¬(R∧Q),
we show {P, P ⇒ Q,Q⇒ R,¬(R ∧Q)} ` ⊥.

P, P ⇒ Q

Q

¬(R ∧Q)

¬R ∨ ¬Q
¬R

P,P ⇒ Q

Q
Q⇒ R

R
⊥

4.8 Practice exercises

1. Let n be an integer and let P (n) be the predicate ‘n2−2n+1 = 0’. What are the truth
values of

a. ∀nP (n)
b. ∃nP (n).

2. Write down, in predicate form, the negation of the following propositions, where x, y
are real numbers.

a. ∃x∀y(y exactly divides x)
b. ∀x∃y(x− y = 17).

3. Write the following statements in predicate form.
a. All dogs bark
b. There does not exist an x such that x = 2x
c. For each y, y2 is greater than y
d. No computer science student is not mathematically literate

4. Is the predicate in Question 2(b) above true? (Justify your answer.)

5. Use truth tables to show that {Q ∧ (P ∨R), Q⇒ R} |= R.

6. Use inference rules to show that {Q ∧ (P ∨R), Q⇒ R} ` R.



Chapter 5

Logic circuits

Most of the material in this chapter is covered in Chapter 9 of Rosen.

In the rest of this course we are going to look at four different views of computing
machines. The lowest level is as an electrical circuit of on/off switches (switching circuits).
The next level is as a network of logic gates (logic circuits) and the highest level is from
the perspective of machine instructions (assembler level). We also look at machines from
the perspective of transitioning from one state to another in response to inputs (automata
theory). We begin with the logic circuits.

We are used to two types of data. Discrete values are distinct, like the integers.
Analogue data is continuous, given any value x and any distance δ > 0 there is another
value whose distance from x is less than δ.

Discrete data can be modelled using the integers and is often referred to as digital
information. Analogue data can be expressed to arbitrary levels of precision.

Examples of digital information are data sets such as the binary numbers {0, 1},
Boolean truth values. {True, False}, a set of colours {Red,Green,Blue}.

Examples of analogue information are continuously variable physical quantities such
as speed as measured by a speedometer, temperature as measured by a thermometer, an
interval of time as measured by a grandfather clock, . . .

Most computers work in binary {0, 1}. They break an analogue quantity, a voltage,
into a digital quantity by taking any voltage around 0V to be equivalent to 0 and any
voltage around 5V to be equivalent to 1.

The binary code can then be used to represent any discrete quantity.

5.1 Processing information

Computer instructions are built from elementary logic operations. Binary information, in
particular truth values, are represented as {0, 1} with, in this course, 1 representing true
and 0 representing false.

We define logic gates for several logical operators. The gates have one or two inputs
and an output. Later we shall consider gates with more than two inputs.

For logic circuits is it common to use mnemonic names for the logical operators rather
than the mathematical symbols, ∧ (AND), ∨ (OR), and ¬ (NOT). You need to be able to
use both notations. When doing assignments and exams use the same notation as is used
in the question you are answering.

An AND-gate takes two inputs and outputs the value of their conjunction.
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x y x AND y

0 0 0
0 1 0
1 0 0
1 1 1

As a logic gate:

�
�

x

y
x AND y

An OR-gate takes two inputs and outputs the value of their disjunction.
x y x OR y

0 0 0
0 1 1
1 0 1
1 1 1

As a logic gate:

�
�
�
�

x

y
x OR y

A NOT-gate takes one input and outputs its negation.

NOT x =

{
1 if x = 0
0 if x = 1

As a logic gate:

b
bb

"
""
hx NOT x

Example Majority Voting
We can use logic gates to build a system which computes the majority vote among

three voters who have a choice of either either yes (1) or no (0).
If two or more people say yes then the decision should be yes, otherwise the decision

should be no. If x, y and z correspond to the votes and r to the result we have

r = (x AND y) OR (y AND z) OR (x AND z)

A logic circuit which computes this expression is

�
� �

��
�

�
�

�
� �

� �
�

x

z

y

•

•

•

5.1.1 Operator redundancy

Since any logic expression has a DNF, it can be built using the AND, OR and NOT
operators. Recall, for example, that (x⇒ y) = (NOT x) ∨ y.

In fact, you only need NOT and either AND or OR. It is easy to check using truth
tables that x OR y = NOT(NOTx AND NOTy), this is one of De Morgan’s laws. So we
could replace the OR gates with

�
�b

bb

b
bb

b
bb

"
""

"
""

"
""

h hh
y

x

Similarly we have that the following circuit uses only NOT and OR gates to compute
AND.
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b
bb

b
bb

b
bb

"
""

"
""

"
""

h hh
y

x �
�
�
�

This means that we can build any logic circuit, any computer, using just AND and
NOT gates, or indeed just OR and NOT gates.

5.1.2 NAND, NOR and XOR

Perhaps more surprisingly there is a logical operator which on its own can generate all the
others. In fact there are two such operators, and they are as simple as AND.

We define NAND to be not AND and we define NOR to be not OR. So

x NAND y = NOT (x AND y)

x NOR y = NOT (x OR y)

The truth tables for these operators are

x y x NAND y

0 0 1
0 1 1
1 0 1
1 1 0

x y x NOR y

0 0 1
0 1 0
1 0 0
1 1 0

We drawn NAND and NOR gates in the same way as the AND and OR gates but with
a small circle on the output. �

�
�
�

�
�h hx x

y y

NAND gate NOR gate

The following logical equivalences hold

NOT x = x NAND x
x AND y = NOT (x NAND y)
x OR y = ( NOT x) NAND ( NOT y)

NOT x = x NOR x
x OR y = NOT (x NOR y)

x AND y = ( NOT x) NOR ( NOT y)

Thus we see that any logical expression can be written using just NAND operators.
Indeed, computers could be built solely of NAND gates.

Notice that OR has a slightly different meaning to the common English usage. When
someone says

I will go to the shops or to the gym

we normally assume that they will do one or the other but not both. In Mathematics OR
allows both of its operands to be true, to emphasise this we sometimes call it inclusive
OR. There is another form of OR, called exclusive OR and written XOR, which has the
normal English meaning, i.e. one of its arguments is true but not both of them.

x y x XOR y

0 0 0
0 1 1
1 0 1
1 1 0
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5.1.3 Multi-input gates

AND and OR can be genralized too any number of inputs. Diagrammatically, we simply
add extra input lines: �

�
�
�

�
�

multiple OR multiple AND

The meaning of a multiple input gates is an extension of original meaning. For example,
the output of multiple AND is 0 if any of the inputs are zero, otherwise it is 1.

Devices implementing multiple gates exist, but they can also be easily constructed
from two input devices. For example, a 3-input AND gate can be constructed as�

� �
�

x

y

z

5.2 Algebraic notation

We have already used two different notations for the logical operators. Now we consider
the algebraic notation which is more compact.

xy means x AND y x ∧ y
x+ y means x OR y x ∨ y
x means NOT x x

x⊕ y means x XOR y

Examples We give some examples using both the logic and algebraic notations.

xy + yz + zx is equivalent to (x AND y) OR (y AND z) OR (x AND z)

x (y + z) is equivalent to x AND (y OR z)

x (y + z) is equivalent to


x AND NOT (y OR z)
and also
x AND (y NOR z)

The following is a list of logical equivalences in algebraic notation.

x = x xx = 0
xx = x x+ x = 1

x+ x = x x0 = 0
xy = yx x1 = x

x+ y = y + x x+ 0 = x
x(y + z) = xy + xz x+ 1 = 1

x+ (y + z) = (x+ y) + z x(yz) = (xy)z

De Morgan’s Laws:
xy = x+ y
x+ y = x y

Note, be careful. In general, x y 6= xy.
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5.3 Building logic circuits

For certain types of logical expression (DNFs, see below) it is straightforward to build a
corresponding logic circuit using NOT gates, multi-input AND gates and a multi-input
OR gate.

Exercise Using NOT gates, and multi-input AND, and OR logic gates draw logic circuits
representing the formulae

� xy + x y

� x yz + xy + xz

Now draw equivalent circuits which use only binary input AND and OR gates.

Given a logical expression in any format, how do we construct a logic circuit which
implements it? Furthermore, how do we construct a small such circuit? We want an
automated process for this, so we need an algorithm which takes ANY logic expression
and returns an efficient corresponding logic circuit.

An algebraic expression is in disjunctive normal form if and only if it is a sum of
products of variables and their negations. These products are often called the addends of
the DNF. We can turn a DNF into a circuit of multi-input logic gates easily. We have one
multi-input AND gate for each conjunction in the DNF and put the outputs of these AND
gates into a single multi-input OR gate. This is gives us an algorithm for constructing a
logic circuit for any logical expression:

1. construct the truth table

2. construct a DNF from the truth table

3. create a NOT gate for each variable which appears negated in the DNF

4. create a multi-input AND gate for each conjunction in the DNF with inputs x or x
depending on whether x or x is in the conjunction

5. if there is more than one AND gate create a multi-input OR gate whose inputs are
the outputs of all the AND gates

Example Consider (x⇒ y) ∧ ¬y. Its truth table is

x y x⇒ y ¬y (x⇒ y) ∧ ¬y
0 0 1 1 1
0 1 1 0 0
1 0 0 1 0
1 1 1 0 0

giving the DNF x y and logic circuit

�
�

b
bb

b
bb

"
""

"
""

h
h

x

y
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Example Consider (x⇒ y) ∧ y. Its truth table is

x y x⇒ y (x⇒ y) ∧ y
0 0 1 0
0 1 1 1
1 0 0 0
1 1 1 1

giving the DNF x y + x y and logic circuit

�
� �
��

�

b
bb

"
""
hx

y

•

•
�
�

5.3.1 Minterms

A minterm is a product which contains exactly one instance of each input variable or its
negation. For three inputs x, y, z the following are minterms xyz, xyz, and xyz but xyz
is not a minterm.

In algebraic notation a DNF is a sum of products and the minterms are the conjunctions
in the DNF.

In general, if there are n inputs, then there are 2n minterms.

Example Recall the Majority Voting function r whose truth table is

x y z r

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

We can compute a DNF for r from this table by looking at the rows in which r has
value 1. In algebraic notation we get

xyz + xyz + xyz + xyz
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Of course this is not the most efficient solution. We need to enhance the algorithm so that
it can produces circuits with fewer gates. We want to add an additional step in which we
construct a smaller DFA before building the AND gates.

5.3.2 Constructing a smaller DNF

When we first considered the majority voting problem we found the expression

yz + xz + xy,

We know that r + r = 1 and r1 = r for any logical expression r so

xyz + xyz = xy(z + z) = xy

We also know that r = r+ r so we can introduce two copies of xyz and use them with the
other two minterms

xyz + xyz + xyz + xyz = xyz + xyz + xyz + xyz + xyz + xyz = yz + xz + xy

We generalise this observation to get a procedure for reducing the size of a DNF: combine
the minterms (and add repeated terms if necessary) to obtain terms of the form

. . . (x+ x) . . .

From this get a smaller equivalent DNF.

Formally, take an existing DNF α1 + . . . αd and write down a new DNF as follows.

1. Consider each addend (minterm) αi in the DNF in turn. If there is another addend
αj which differs from αi in just one variable then add the new addend to the new
DNF, otherwise add αi to the new DNF.

2. Remove any addend from the new DNF which also has a subproduct in the new
DNF.

Example Suppose that r is specified by the following table.
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x y z r

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

From this we read off the DNF

x yz + xyz + xy z + xyz + xyz

We match x yz to x yz and get yz. The product xyz does not match any others so is
used as it is. The product xy z matches xy z to give xy. Finally, xyz is matched to x yz,
generating yz and xyz is matched to xyz creating xz. This gives the DNF

yz + xyz + xy + yz + xz

from which we remove one of the repeated addends yz to get yz + xyz + xy + xz.

Example Change the previous example slightly, inverting the value of two rows.

x y z r

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

From this we read off the DNF

x yz + xyz + xyz + xy z + xyz + xyz + xyz

At the first step, the product xyz now matches xyz and generates xy, and the product
xyz can match xyz to generate yz. After removing repeats we get a DNF

yz + xy + xy + yz + xz

(note, this process is not unique and different DNFs can be found.)
This has given us a smaller DNF but not the smallest possible. The issue is that there

was a larger factorisation that we could have performed on the original DNF. We have
applied the rule r + r = 1 but it is also true that rs+ rs+ rs+ rs = 1.

In general, for any n the DNF (sum) of all of the minterms in n variables is 1 (true).
Using this observation on the DNF

x yz + xyz + xyz + xy z + xyz + xyz + xyz

we find that, for example,
xy z + xyz + xyz + xyz
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matches x, so we can replace all four of these minterms with just x. Similarly, we can find
four matches which generate y and four which generate z, giving the minimal DNF

z + y + x

There is a graphical approach which can be used to identify factorisations involving
the sums of all minterms. It works well for expressions of 3 or 4 variables, and reasonably
well for expressions of upto about 6 variables. In this course we will just look at 2 and 3
variables.

Exercises Draw logic circuits for the following logical expressions.
1. xy + x, using any gate types
2. x⇒ y, using AND, OR and NOT gates
3. x y + xy + xy, using AND, OR and NOT gates
4. x y z + x y z, using NOT, OR and multi-input AND gates
5. xy, using only NAND gates
6. x⇒ y, using only NAND gates

5.3.3 Karnaugh maps

For 2 and 3 variables we can write truth tables so one can spot the factorisations more
easily. The minimisation process from the previous section can be described graphically
using what are called Karnaugh maps. This method allows us to identify the ‘collapsing’
combinations. An alternative way of writing truth tables for small numbers of variables
is to label the rows and columns with the values of the variables.

We begin with two variables. There are four possible choices for the values, x = 0, 1
and y = 0, 1. We write the values of x on the rows, the values of y on the columns, and in
the corresponding cell we put the value of the expression for that value of x and y. The
top row corresponds to x false, i.e. x = 1, and the left column to y = 1.

Example Consider the expression r = xy + y. The table for this is

0 1

0
1

0 1

0 1

equivalent to

x y xy xy + y

1 1 1 1

1 0 0 0

0 1 0 1

0 0 0 0

The rows are the values of x and the columns are the values of y. As we did for DNF
above, to find the minterms for which the expression evaluates to true we look at each
table entry which has value 1. It can be helpful to label the rows and columns of the table
with the variables and their negations, this makes reading off the minterms easy. It is
important to use a common convention, the convention is that the values in the top row
are computed with x being false, and the values in the first column are computed with
y = 1, etc.

y y

x
x

0 1

0 1

In this case we get the DNF xy + xy.

Two 1s in a column indicate that the column element is in a minterm with both x and
x. Two 1s in the first column mean that we have x y + xy, which can be replaced by just
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y. Similarly two 1s in the second column give us just y, and two 1s in the rows give us x
or x.

Graphically, we mark each simplification by drawing a loop around the appropriate 1s.
If a 1 is not part of a row or column pair then a loop is drawn around it on its own. Once
all the 1s are in at least one loop the minimal DNF is read off, one addend for each loop.

For the above example we have one loop, and the DNF is y (the label of the column
containing the loop).

0 1

10

y y

x

x

�
�
�
�

Example Consider the expression r = x+ xy. The Karnaugh map for this is

y y

x
x

0 1

1 1

We can draw a loop around the right column. This still leaves one 1 uncovered, but
we can draw another loop around the lower row. The 1s are all then covered and we can
read off the DNF x+ y.

0 1

11

y y

x

x
�� ��
�
�
�
�

Example (a) For the Karnaugh map of x y + xy we have no columns or rows, so the
covering loops are as shown on the left below and the expression is already minimal.
(b) For the Karnaugh map with 1s in every position we have a large loop around the whole
table and the DNF is 1.

1 10 1

1 10 1

y yy y

x x

x x

(a) (b)

������
�� �

�
�
�

Exercise Write out the Karnaugh map for r = x+x y and use it to construct a minimised
expression.

5.3.4 Karnaugh maps in three variables

Minimising an expression in only two variables is straightforward as there are only a few
cases which can arise. We have descibed the case of two variables in detail as a precursor
to the three variable case.

There are 23 = 8 rows in the truth table for a 3-variable expression, so we need a
Karnaugh map with 8 cells. We can draw this as a 2 × 4 table but we need to choose
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carefully how the columns are labelled in order for adjacent 1s to correspond to identity
factorisations. A labelling that works, and the one we use in this course is

y y y y

x
x

z z z z

The table is thought of as self looping so the first and last columns are adjacent (imagine
the table wrapped around a cylinder).

Example The following is the Karnaugh map for the majority voting expression

y y y y

x
x

0 0 1 0

0 1 1 1

z z z z

We draw a loop around the middle pair of 1s in the x-row, they have the same x and y
values but complementary z values. This gives the expression xy. We can also draw a
loop around the right-most pair of 1s, giving xz, and the third column, giving yz.

10 00

11 10

y

z

y

z z

y

z

y

x

x
�� ���� ��
�
�
�
�

We have now covered all the 1s in the table, and have the DNF xy + xz + yz.

To identify a factorisation of the form r s + rs + rs + rs we draw loops around blocks of
four adjacent 1s if possible (bigger blocks are better).

Example Consider r = xz + xyz + yz + xyz whose Karnaugh map is:

y y y y

x
x

0 1 1 0

1 1 1 1

z z z z

We can draw several size loops:
• 2 x 1 loops, e.g., xz
• 4 x 1 loops, e.g., x
• 2 x 2 loops, e.g., y

10 01

11 11

y

z

y

z z

y

z

y

x

x
�� ��
�
�
�
�

The 4×1 and 2×2 loops cover all the 1s, so the corresponding terms x and y are sufficient,
and hence r = x+ y.
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Example Consider r = x y z + x yz + xyz whose Karnaugh map is:

y y y y

x
x

1 0 0 1

0 1 0 0

z z z z

or equivalently

y y y y

x
x

0 0 1 1

1 0 0 0

z z z z

There is a 2 × 1 pattern in the first row. (Remember the first and last columns are
considered to be adjacent, you can imagine that the Karnaugh map has been rewritten
as shown on the right above.) This leaves the single 1 in the second row which cannot be
covered by a 2× 1 loop thus we have to use a singleton cover. Then we get the following
cover, which generates the DNF x y + xyz.

01 10

01 00

y

z

y

z z

y

z

y

x

x ����
�� ��

5.3.5 Fundamental patterns for 3 variables

There are 28 = 256 Karnaugh maps with three variables, so although they could all be
written out it is a large set to remember. However, it is useful to remember the basic
patterns of loops that can occur, and their corresponding logic expression. In this section
we give examples of these patterns. Blocks of 4 give a product of one variable, blocks of
2 give a product with two variables and singletons give a product with three variables, so
to get the smallest addends draw the largest possible loops.

1 1 11 11 1

1

1

11

1

11

1

1 11

1

y y y y

z z z z

y y y y

z z z zz z z z

y y y y

z z z z

y y y y

x x x x

x x x x

�� �� �
�
�
�

�
�

�
�

addend = 1 addend = x addend = z addend = y

1 1

1

�
�
�
�

1

11

1

11

1

y y y y

z z z z

y y y y

z z z zz z z z

y y y y

z z z z

y y y y

x x x x

x x x x

addend = yz addend = xz addend = xyz addend = xy

1

�
�
�
�

�� ��
���� ����

Exercise Write out all the 2×1 and 2×2 patterns that can occur in a 3 variable Karnaugh
map, and give the addends they generate.

Exercise Draw a Karnaugh map and a corresponding minimized DNF for xy+xyz+xyz.

Note that a minimal DNF does not necessarily give the smallest logic circuit.

Example The Karnaugh map for xyz is
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11 11

11 01

y

z

y

z z

y

z

y

x

x

�
�
�
�
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�
�
�

which gives the minimal DNF x+y+z. The corresponding logic circuit, using multi-input
gates, is given on the left below, while on its right is a smaller equivalent circuit which does
not correspond to any DNF. A similar situation holds for x+ y + z which has minimal
DNF x y z.

� ��	 bb

bb

bb

bb
""

""

""

""
e

e
e
e �� �	 bb

bb

bb

bb
""

""

""

""
e

e
e
e

x+ y + z x y z

xyz x+ y + z

5.3.6 Extensions of the Karnaugh approach

Karnaugh maps for 4, 5 and 6 variables are possible, but as the number of variables
increases they become less easy to write out and use. There is an algorithm, the Quine–
McCluskey algorithm, which is used in practice for expressions with 4 or more variables.
We will not discuss it in this course. However, you should be aware that, as we have
seen, there are 2n minterms so any algorithm which needs to consider them all is going
to become impractical for relatively small values of n. Furthermore, the problem of find
a minimal logic circuit for any given expression is known to be NP-complete, there is no
known polynomial time solution. For this reason heuristic methods which give a reasonable
optimal solution are often preferred.

We should also note that in circuit design the problem is not always specified by a
completely defined logical expression. The specification may be of the form, say:

The circuit has n Boolean valued inputs, x1, . . . , xn. If x1 and x2 are true then
the circuit must output true, if all the inputs are false then the circuit must
output false, . . . etc.

In effect the truth table is described. The point is that there are often values for which
the outcome is not specified, i.e. the specifier ‘doesn’t care’. This may be specified by
using # in the truth table.

For example, a designer may specify a circuit with 2 inputs and the following corre-
sponding outputs

x y r

0 0 0
0 1 1
1 0 1
1 1 #

The designer ‘does not care’ what value the implemented circuit returns when exactly two
of its inputs are true.

The Karnaugh map (and Quine–McCluskey) minimisation methods can exploit this
by leaving minterms whose value is # out of the DNF, but allowing these minterms to be
included in the matching steps. This allows optimisation against the choice values for of
the # valued minterms. In any final circuit the unspecified minterms will all have a value
of 0 or 1, the method ensures the values taken are those which give the smallest circuit.
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5.4 Computer integer arithmetic

We complete this chapter by discussing the implementation of integer addition and sub-
traction using logic circuits.

5.4.1 Integer addition - a full adder

Recall that we defined binary addition positionly, as for decimal addition, starting with
the rightmost digits and ‘carrying forward’ when the digits sum to 2.

1 1 0 1
+ 01 1 1 0

1 0 0 1 1
For each column,

� if the sum of both entries and the carry value is 0, then the sum entry is 0.

� if the sum of both entries and the carry value is 1, then the sum entry is 1.

� if the sum of both entries and the carry value is 2, then the sum entry is 0 and there
is a carry value of 1.

� if the sum of both entries and the carry value is 3, then the sum entry is 1 and there
is a carry value of 1.

In fact we can see that each column sum involves the two entries and two carry values,
the incoming carry value from the previous column sum, cin, and the carry value to be
passed to the next column, cout. Denoting the two column values as x and y we have the
following truth table which defines the sum digit, s, and cout for each of the possible values
of x, y and cin.

x y cin cout s

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

The first step in constructing a logic unit to perform binary addition is to build a
circuit which implements the expressions for s and cout. We can show that

s = xycin + x ycin + xycin + xy cin, cout = xy + ycin + cinx.

We can use these and the techniques defined earlier in this chapter to build the circuits.
We write the result graphically as a box labelled + with three inputs on its left and two
outputs on its right. This is called a full adder.

cin

y

x

s

cout

+
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Exercise Use the techniques from earlier in this chapter to construct a logic circuit which
computes cout and s from the inputs x, y and cin.

We can connect circuits of this type together, one for each digit in the number, to get
a ripple carry adder.

For example, for 4-bit integers x3x2x1x0 and y3y2y1y0, say, we have 8 inputs and the
initial cin which is set to 0. There are 4 outputs s3, s2, s1 and s0 which are the bits of the
sum, together with the final ‘carry’ or ‘overflow’ bit, which is the last value of cout.

0
y0
x0

y1
x1

y2
x2

y3
x3

s0

s1

s2

s3

s4

+

+

+

+

5.4.2 A half adder

We can build a full adder from two half adders. A half adder just takes the two digits x
and y as inputs, and calculates their sum as a result digit, s, and a carry bit, cout. The
truth table for the a half adder is

x y c s

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

from which we get
c = xy
s = xy + xy .

Noting that xy + xy = (x+ y)xy we have the following logic circuit for the half adder

x

y

x+ y

xy

s = (x+ y)xy

c = xy

�
�
�
�

�
�h

•
•

•

�
�



54 LOGIC CIRCUITS

This is drawn as

y

x

s

cout

HA

We can then use two half adders to build a full adder,

cin

y

x

s

cout

HA

HA �
�
�
�

Exercise: Show that the truth table for this is the same as the initial truth table for full
addition.

5.4.3 Subtraction

Recall that subtraction can be defined as adding a negation, and that in the two’s com-
plement notation the negation of a integer can be found by inverting the all its bits and
then adding o . . . 01. Thus we can implement a subtraction logic circuit using full adders
and NOT gates, inverting the bits in y and setting the first cin to 1. Below is the circuit
for 4-bit integers.

1
y0
x0

y1
x1

y2
x2

y3
x3

s0

s1

s2

s3

s4

+

+

+

+d

d

d

d
Exercises For the following logical expressions, write down the Karnaugh map and use
it to find a minimal corrsponding DNF.

1. x y + x y 3. xyz + xyz
2. x y + xy 4. xy + xyz

5. x y r
0 0 1
0 1 1
1 0 1
1 1 0



Chapter 6

Switching circuits

We now consider how logic gates are built from transistors. We will not look at the physics
of transistors, the conductivity of metal, the behaviour of electrons etc. We shall use a
Boolean model in which wires are thought of as connectable to 5V (1) and 0V (0) nodes
(called rails), and switches (transistors) connect and disconnect wires creating potential
conduction paths (current flow).

You can think of a transistor as a box with three connection points, terminals. One
terminal is used to enable/disable current flow though the transistor. This is called the
gate. If the transistor is enabled there is a conduction path through it. The other two
terminals are called the load terminals. In a switching circuit we have a set of wires
connecting each transistor terminal to another transistor terminal, to the 1 or 0 rail, or to
nothing, i.e. ‘floating’.

6.1 Simple circuits

We shall start by looking at examples using transistors which are enabled when the value
on their gate is 1. This type of transistor is shown graphically as

gate

Consider the circuit below, in which the values on the gates are represented by the
Boolean values x and x.

x

x

1

0

r

B

A

We can compute the value at r for given values of x. The switch A is connected to 0, so
the value at its lower terminal is 0. Similarly the value at the higher terminal switch B is
1. If x = 1 then B is enabled and there is a conduction path through B, causing the value
on its lower terminal to be 1. This is then also the value of r and the upper terminal of
A. The 0 on A’s gate disables A so it is OK to have 0 on one load terminal and 1 on the
other.
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1

0

1

0

r = 1

1

1

1

0

If x = 0 then A is enabled and there is a conduction path through A, causing the value on
its upper terminal to be 0. This is then also the value of r and the lower terminal of B.

0

1

1

0

r = 0

1

0

0

0

Now consider the circuit for which two input values x and y are needed to define the
gate values.

x y

x

y

1

0

r

A C

B

D

The switches D and B are in series so there is a conduction path from the 0 rail to r if
they are both enabled. The switches C and A are in parallel so there is a conduction path
from the 1 rail to r if either of them is enabled.

It is necessary to design switching circuits with care. If a conduction path is created
between 1 and 0 then the circuit will ‘blow up’. For example, in the circuit

x y

x

1

0

r

if we set x = 0 and y = 1 we have a conduction path from 1 to 0.

It is not always easy to spot potential 1-0 connections in a switching circuit. We shall
consider a design methodology which addresses it later in this chapter.
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6.1.1 Implementing logic gates

an OR gate
Consider again the switching circuit

x y

x

y

1

0

r

Notice that the value of r is 0 if x = y = 0 and r = 1 otherwise. Thus the value on r is
x ∨ y. So we can implement an OR gate as a switching circuit in this way.

Notice, we cannot simply implement an OR gate as

x y

1

0

r

as when x = 1 there would be a conduction path between the 1 and 0 rails.

an AND gate

x y

y

x

1

0

r
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a NOT gate
If we swap the gate values of the first example above we get a NOT gate.

x

x

1

0

r

There is no reason why logic circuits must be built from logic gates. If we have a
specific and heavily used logic expression we may be able to create a custom switching
circuit which computes it more efficiently than one built from the standard logic gates.
However, as we have said, in reality we do not want to allow a free choice of switching
circuit because of the potential for connecting the 0 and 1 rails. Also, as a result of
the transistor design technology, the type of switch we have considered so far may be
less reliable at conducting 1 than 0. We now consider a second type of transistor and a
circuit design methodology which makes the creation of a conduction path between 0 and
1 impossible.

6.2 N-type and P-type transistors

Formally, a transistor is a unit with three terminals, the gate and two load terminals.
The switches we have considered so far are N-type transistors, they are enabled if the

value on their gate is 1.
A P-type transistor is similar to an N-type except that it is enabled if the value on its

gate is 0 and disabled if the value is 1.
We draw an N-type transistor as for the switches above, and a P-type transistor with

an additional circle on the gate terminal to indicate that it is enabled on 0.

P-type N-type

c
We can implement a NOT gate using N-type and P-type transistors as follows.

x

x

1

0

r

c

It is tempting to implement an AND gate in a similar way. However, real transistors
are not perfect conductors. In detail,

� N-type transistors: enabled if and only if the value on the gate is 1, but are poor
conductors of load 1

� P-type transistors: enabled if and only if the value on the gate is 0, but are poor
conductors of load 0
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So, we design circuits so that all the transistors on conduction paths from 1 to the
output are P-type and all transistors on conduction paths from 0 to the output are N-type.
We say that such a network is canonical.

6.2.1 A canonical AND circuit

To obtain a canonical AND gate using N and P-type transistors, first we decide how to
build it using both x,y and x,y as inputs. This can be done by modifying the simple
switching circuit from above and using the identity ¬¬r = r

x y

y

x

1

0

r

b
b

We can convert this into a circuit with two inputs x and y by adding the corresponding
NOT circuits and using the output of these circuits as the gate values.

xy

xy

1

0

r

bbb
b

�� ��
��

Exercise Draw a canonical circuit which implements an OR gate.

6.3 Building canonical circuits

Recall that we want circuits in which all the transistors between the 1 rail and the output
are P-type and all the transistors between the 0 rail and the output are N-type.

We achieve this by implementing the circuit for a logical expression r in two parts.
We design, using only P-type transistors, a circuit in which there is a conduction path
through the circuit for exactly those input values for which r = 1. Initially we use both x
and x inputs if necessary. This is called the pull-up circuit.

We then design another circuit using only N-type transistors, a circuit in which there
is a conduction path through the circuit for exactly those input values for which r = 0.
This is called the pull-down circuit.
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6.3.1 Constructing a pull-up circuit

Given a logic expression composed of AND, OR and NOT gates we construct a pull-up
circuit inductively on the structure of the expression.

� For an instance of a variable x use a P-type transistor whose gate value is x

� For an instance of a variable x use a P-type transistor whose gate value is x

� For a product r1 . . . rk construct circuits for each ri and put them in series

� For a product r1 + . . .+ rk construct circuits for each ri and put them in parallel

By construction there is a conduction path through the circuit for precisely those input
values for which r = 1.

Example Construct a pull-up circuit for r = (x+ y + z)x+ z
We have two expressions, (x + y + z)x and z to put in parallel. For (x + y + z)x we

need x+ y + z which is

y zx b b b

Next we put this in series with a transistor for x.

y zx b
b
b b

x

Finally we put this in parallel with a transistor for z.

y z zx b
b
b b b

x

6.3.2 Constructing a pull-down circuit

Given a pull-up circuit we construct a corresponding pull-down circuit by inverting every-
thing.

Replace each P-type transistor with an N-type transistor. Take the sequences of sub
circuits which are in series and put them in parallel and take the sequences which are in
parallel and put them in series.
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The result is a circuit which has a conduction path through it for precisely those input
values for which r = 0.

You may find it easier to construct the pull-down circuit directly:

� For an instance of a variable x use a N-type transistor whose gate value is x

� For an instance of a variable x use a N-type transistor whose gate value is x

� For a product r1 . . . rk construct circuits for each ri and put them in parallel

� For a product r1 + . . .+ rk construct circuits for each ri and put them in series

Example Construct a pull-down circuit for r = (x+ y + z)x+ z

Take the circuit from the previous example, swap the transistor types and interchange
the series and parallel structures.

y

z

z

x
x

The pull-down circuit is the dual of the pull-up circuit.

6.3.3 Constructing a canonical circuit

To construct a canonical circuit for an expression r we take the pull-up circuit and attach
the top wire to the 1 rail and the bottom wire to the output wire. For precisely those
variable values for which r = 1 there will be a conduction path from 1 to r.

Then take the pull-down circuit and attach the bottom wire to the 0 rail and the top
wire to the output wire. For precisely those variable values for which r = 0 there will be
a conduction path from 0 to r.

Finally we can take the canonical NOT circuits for each negated variable, x, and feed
their output into the gates whose value is x.

The circuit will be canonical by construction.

Example Consider r = ¬(x ∧ y), a NAND gate. We can write this as r = x + y. Then
we get the canonical circuit
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x y

y

x

1

0

r

b b

Exercises Construct canonical circuits that implement:
1. x 2. x+ y 3. xz + yw 4. x⇒ y 5. xy
6. (x+ y)z 7. x+ yz 8. a NOR gate

Note, if only a small proportion of the variables in a logical expression are negated then it
may be more efficient to implement the negation of the whole expression and then negate
the final result. For example, ¬(x ∧ y) = (¬x ∨ ¬y) has canonical implementation on the
left below and, since x ∧ y = ¬(¬x ∨ ¬y) the circuit on the right is a corresponding AND
gate.

x xy y

x x

y y

1 1

0 0

r r

b b bb b

6.4 Terminology

We conclude this chapter with some terminology which is used in various parts of the
computer hardware industry.

The N-type and P-type transistors are MOSFET transistors, Metal-Oxide-Semiconductor
Field-Effect Transistors.

P-type transistors are also called PMOS, or P-channel, or PFET transistors.
N-type transistors are also called NMOS, or N-channel, or NFET transistors.
The transistor circuits we have described are sometimes referred to as CMOS logic,

Complementary Metal-Oxide-Semiconductor logic.
The phrase “metal-oxide-semiconductor” is a reference to the physical structure of

certain field-effect transistors, having a metal gate electrode placed on top of an oxide
insulator, which in turn is on top of a semiconductor material.
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Assembly language

Ultimately computers execute instructions which are coded as sequences of 0s and 1s. It
is possible to write a program in this way, although extremely tedious and error prone.
In order to make this task easier machines are provided with a mnemonic form of the
instructions, and a program which reads a file written in this form and translates it into
the corresponding binary representation.

This mnemonic form is the machine’s assembly language and the program which trans-
lates the assembly code into binary is called the assembler.

It is also possible to write programs in the machine’s assembly language, but generally
we use more human oriented languages such as Java. Such languages are often called
high level languages, and assembly languages are called low level languages. Compilers
take a program written in a high level language and translate it into the machine’s native
assembly language.

High level languages typically have a rich structure of conditional statements, loops,
data structures, and so on, which makes writing complex software systems a lot easier.
Low level languages have only basic arithmetic, memory copy and branch instructions.

Although most programming these days is done in high level languages, assembly
programming is still necessary. If you want to write a compiler, you need to understand
assembly language (the compiler’s target language) in order to write a program to generate
it. Some high performance embedded system applications need to be coded at assembly
level because of the limitations on code size or power consumption. Device drivers and
other items very close to the hardware are also sometimes written in assembly code.
Finally, if you want to understand CPU design, or simply tweak your code to optimise
performance it, you need to understand how your CPU executes your programs.

In this chapter we give an introduction to assembly language programming using the
MIPS language.

7.1 The MIPS processor

We cannot study every kind of processor since there is a huge variety. They appear not
just in PCs but in all kinds of embedded systems (mobiles, TV, video recorders, washing
machines, etc.). Nonetheless, like high level languages, studying one gives us some insight
into all of them, so we shall focus on the MIPS processor family. It is a RISC (reduced
instruction set) processor and has a small number of instructions which can be performed
quickly and which make pipelining efficient.

We will use a simulator SPIM to simulate the MIPS processor and its assembly lan-
guage.
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If you want to run SPIM on your own computer you can download it from
http://www.cs.wisc.edu/~larus/spim.html.
There is a version of SPIM running on teaching.

7.1.1 Memory, bytes, and words

Recall from CS1801 the pigeonhole memory model. The computer’s RAM is like a lot
of pigeonholes, each of which can hold, in the case of MIPS, one byte, i.e. 8 bits, corre-
sponding to numbers between 0 and 255. The pigeonholes are all arranged in order, and
we number them from zero, so irrespective of the contents, each pigeonhole corresponds
to a permanently allocated number called its address.

MIPS uses 32 bit addressing, i.e. the address is a 32 bit (4 byte) number. So MIPS
can have up to 232 addresses, namely 4096 Megabytes (MBytes) or 4 Gigabytes (Gbytes).
A MIPS processor has a 32 bit architecture, i.e. data is handled in groups of 32 bits (4
bytes). A word for the MIPS processor is 4 bytes long.

When programming in machine code we need to specify memory addresses explicitly.
In assembly language we can use labels, which are symbolic names for memory locations.
The assembler works out the 32 bit address from this label. Before giving examples we
need to discuss registers.

7.1.2 Registers

MIPS is a register based architecture. Registers are like memory locations but are posi-
tioned within the CPU so that access is fast. The MIPS processor has 32 registers, each
storing a 32 bit word.

This value can be an unsigned integer, a (two’s complement) integer, or an address,
depending on the instruction.

Of these registers 24 are for general use. Their names are
$v0, $v1, $a0 to $a3, $t0 to $t9, $s0 to $s7.
Arithmetic operations can only be performed on values in registers.

There are some conventions about register use, in particular $a0, $a1, $a2, $a3 are
used for arguments, parameters, of subroutines, $v0, $v1 are used for results of expression
evaluation, $t0-$t9 are used for temporaries which are not preserved by subroutine calls.
Understanding and using these conventions makes MIPS programs easier to read and
maintain.

Example li $a0, 5

li $a1, 6

add $a2, $a0, $a1

The instruction li is load immediate which puts the value on the right (5) into the register
on the left ($a0). The instruction add adds, in this case, the contents of register $a0 and
register $a1 and leaves the result in register $a2.

We don’t go into instruction representation in this course but a brief discussion is
needed to understand how the instructions are used. MIPS instructions (code) have to
be represented as bit strings and it is efficient if they each fit in to one word, 32 bits.
An instruction has an operator and values which are operated on, and if these values are
themselves 32 bits long they cannot be included directly in the instruction. The 32 MIPS
registers can each be specified using only 5 bits, and so the values are held in registers and
only the register specifications need to be included in the instruction.
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7.2 Data

Data and code are separated in a MIPS program. Variable declaration is the association
of a name with a memory location so that the name can then be used in the program.
Variable declarations should be introduced by the directive .data

.data

X: .word 5

This declares a variable X and initialises it with the value 5, represented as 32-bit string
(word). In memory, 4 bytes is allocated and X is a synonym for the address of this location.

For arrays we want the array entries to be in adjacent memory locations. MIPS does
not have an array type. Contiguous memory can be allocated using the .space directive.

.data

A: .space 40

This allocates 40 bytes, 10 words, of memory and A is a synonym for the address of the
first of these words.

Values are copied into registers using the instruction lw (load word). This instruction
takes a register $r and a memory address x and copies the value held at the address
x into the register $r. The address x is a 32-bit number and, as we mentioned above,
representing the load instruction for the full memory range would take more than 32 bits.
Thus the address x is loaded in to a register $s and lw loads the contents of x indirectly,
loading the contents of the address held in $s (the contents of the contents of $s!) into
$r. This is written

lw $r, ($s)

and read as ‘load the contents of the address held in $s into $r’.
An address is put into a register using the instruction la (load address). (On the

face of it la, and li, take 32-bit operands, however strictly speaking they are not pure
MIPS instructions. They are built, by the assembler, using the primitive lui and ori

instructions which load 16 bits and pad the rest. For this course you can treat la and li

as MIPS instructions and you do not need to know about lui or oir.)

Example The following adds 5 and 6 and leaves the result in $t2.

.data

X: .word 5

Y: .word 6

.text

la $a0, X

la $a1, Y

lw $t0, ($a0)

lw $t1, ($a1)

add $t2, $t0, $t1

The directive .text switches the mode back to program code. The instruction la $a0 X

loads the address associated with X into the register $a0. The instruction lw $t0 ($a0)

loads the contents of the location held in $a0 into the register $t0.

The companion instruction sw $t0 ($a0) (store word) stores the contents of the reg-
ister $t0 at the location held in $a0
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Example

la $a0, X

la $a1, Y

lw $t0, ($a0)

lw $t1, ($a1)

add $t2, $t0, $t1

la $a2, Z

sw $t2, ($a2)

.data

X: .word 5

Y: .word 6

Z: .word 0

MIPS also provides a move instruction which copies the contents of one register to
another. This instruction is expanded by the assembler into an addition operation, the
move is on the left below and the implementation as add immediate is on the right.

move $rt, $rs addi $rt, $rs, 0

Recall the .space directive which allocates several adjacent bytes of memory. The full
forms of the lw and sw instructions allow addresses to be specified with an offset. For
example,

lw $r, 8($s)

loads, into $r, the word (4 bytes) which begins 8 bytes on from the address held in $s.

This allows arrays to be implemented. For example, we can implement an array
A = [1, 2, 3, 4] using

la $a0, A

li $t0, 1

sw $t0, ($a0)

li $t0, 2

sw $t0, 4($a0)

li $t0, 3

sw $t0, 8($a0)

li $t0, 4

sw $t0, 12($a0)

.data

A: .space 16

7.3 Arithmetic operations

We have already seen add which adds the contents of two registers and stores the result
in a third. This instruction also tests for overflow. There is a corresponding instruction
addu (add untrapped) which does the same thing but does not check for overflow.

In its pure form we can implement subtraction as the addition of the negation, but
there is a MIPS instruction for subtraction

sub $d, $s, $t
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which subtracts the contents of register $t from the contents of register $s and stores the
result in register $d.

Sometimes we just want to add a constant to a value. The instruction addi (add
immediate) does this.

addi $d, $s, C

adds the (signed) integer C to the contents of register $s and stores the result in register
$d.

MIPS also provides a multiplication instruction mult, however this is not completely
straightforward to use because of the likely size of the result.

mult $d, $s

mult is 64-bit operation which multiplies the two 32-bit contents of registers $s and $t

and stores the 64-bit result in two special locations HI which holds the top 32 bits and LO

which holds the bottom 32 bits. The programmer has to convert these values to whatever
form they need.

There are several other forms of the arithmetic operations and bitwise logical operations
provided in MIPS, but in the brief description in this course we will not discuss these.

7.4 Commenting

Commenting is always an important task to carry out when coding. However, as it is
very easy to lose your train of thought when writing in assembly language, it is even more
important to do so in assembly. Comments commence with a # and are terminated by
end-of-line.

li $a0, 10

# This is a very important comment

la $a1, X # So is this...

7.5 Control flow

Programs written in high level languages such as Java do not generally start at the be-
ginning of the code, run, and then finish at the end. Execution moves from one place to
another, loops, and takes different paths depending on the values of the input variables.

Control flow in assembly language is more primitive. Lines of code are labelled and
control flow consists of instructions to jump to labels.

7.5.1 Unrestricted jump

The simplest type of command is just to jump to a label. In MIPS the instruction is
j label. On its own it is not very useful. In the following example the update to $a0 is
ignored.

Example

.data

X: .word 5

.text

la $a0, X
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j loadX

li $a0, 5

loadX: lw $t0, ($a0)

add $t1, $t0, $t0

It is easy to write nonterminating code.

Example

loop: la $a0, X

lw $t0, ($a0)

add $t1, $t0, $t0

j loop

.data

X: .word 5

7.5.2 Branch instructions

Branch instructions are conditional jumps, essentially if statements. There is a test for
inequality or equality and a jump is performed if the test succeeds.

It turns out that for implementing many of the standard control flow operations it is
most efficient to use a branch on failure. The test for inequality is done by bne.

bne Register1, Register2, label

If the contents of Register1 are not equal to the contents of Register2 then program
execution jumps to label. Otherwise the bne statement is effectively ignored and control
flow continues with the statement immediately following.

li $t0, 10

la $a1, n1

lw $t1, ($a1)

move $a0, $t0

loop: addi $t0, $t0, -1

add $a0, $a0, $t0

bne $t0, $t1, loop

.data

n1: .word 1

The corresponding branch-if-equal instruction is beq

beq Register1, Register2, label

If the contents of Register1 is equal to the contents of Register2 then program execution
jumps to label.

There are also bge and ble which branch if the left operand is greater than or equal
to, and less than or equal to, the right operand respectively. There are abbreviations for
comparison with zero,

bgez Register1, label is the same as bge Register1, 0, label



Control flow 69

7.5.3 The goto statement

Many programming languages (e.g. Fortran and C++) have a some form of goto statement
which corresponds to jump. However, as early as 1968, Dijkstra raised concerns about the
unrestricted use of jumps in his seminal paper ‘Go To Statement Considered Harmful’.
Modern programming styles and languages do not allow unrestricted jumps. Instead more
restricted control flow statements, such as for, while-do, if-then-else etc., are used.
These are translated into equivalent jump-based code by the compiler.

We now show standard implementations of high level control flow statements in MIPS.

7.5.4 IF statements

IF statements can be translated directly into branch statements. For example, the Java
statement on the left corresponds to the MIPS statement on the right.

Java MIPS

if (a0 == 5) { bne $a0, 5, cont

statement1; } # Code corresponding to statement1

statement2; cont: # Code corresponding to statement2

There is no instruction which directly corresponds to if-then-else, instead we use a
branch and a jump.

Java MIPS

if (a0 == 20) { bne $a0, 20, eLabel

statement1; } # Code corresponding to statement1

else { j cont

statement2; } eLabel: # Code corresponding to statement2

statement3; cont: # Code corresponding to statement3

7.5.5 While loops

A while loop has a Boolean valued condition and a statement. If the condition evaluates to
true then the statement is executed and the condition is evaluated again. This is repeated
until the condition evaluates to false. The corresponding assembly code has a label at the
start of the condition test and an unconditional jump to this at the end of the statement.
There is also a label at the start of the statement which is jumped to if the condition is
true and a label which is jumped to otherwise.

Java MIPS

while (a0 > 3) { body; } loop: bgt $a0, 3, stmt

statement; j cont

stmt: # Code corresponding to body

j loop

cont: # Code corresponding to statement

In fact it is more efficient to reverse the outcome of the Boolean test and perform the
jump to the next statement if the test evaluates to false. This saves code space.
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Java: MIPS

while (a0 > 3) { body; } loop: ble $a0, 3, cont

statement; # Code corresponding to body

j loop

cont: # Code corresponding to statement

7.5.6 for loops

A for loop is a type of a while loop in which the number of iterations is specified explicitly.

Java MIPS

for (a0 = 0; a0 < 20; a0++) { body; } li $a0, 0

loop: bge $a0, 20, cont

# Code corresponding to body

addi $a0, $a0, 1

j loop

cont: # rest of code

The MIPS code is implementing the while loop equivalent of the for loop, which in Java
has the form

a0 = 0;

while (a0 < 20) {

body;

a0++; }

7.6 The SPIM simulator

We have introduced instructions, such as li, add, etc. and we have introduced assembler
directives, so we can store data in a particular memory location and use a label to refer
to it. To actaully run code we would need a MIPS processor. In this course we look at
the form of MIPS input which can be read and executed by a MIPS processor simulator,
SPIM. Using SPIM we can step through an assembly language program as though it were
actually running on a MIPS processor.

7.7 The structure of a SPIM input program

We need to specify the first instruction to be executed, and we need some print functions
to allow us to output results and comments via SPIM. The default label of the start
instruction is main.

A MIPS program can be input to the version of SPIM running on teaching in the
following format.

.text

main:

(your code here)

.data

(your allocation of memory here)
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7.7.1 System calls

SPIM translates the assembler into binary, the loading of the code into memory, the
allocation of memory locations to variables and the actual execution of the code. The
SPIM instruction syscall causes SPIM to access operating system services. The required
service is specified by the value held in register $v0. There needs to be at least one syscall
at the end of a SPIM input file which stops the program. In this course we shall need to
read and print values and to stop the program execution.

As we have said, the behaviour of syscall depends on the current value of $v0 which
must therefore be set in the code. If the value in $v0 is 10 then syscall stops the program.

Example .text

la $a0, X

la $a1, Y

lw $t0, ($a0)

lw $t1, ($a1)

add $t2, $t0, $t1

la $a2, Z

sw $t2, ($a2)

li $v0, 10

syscall

.data

X: .word 5

Y: .word 6

Z: .word 0

You can type the above program into a file, example1.a say, and run SPIM.

teaching$ spim example1.a

To see some output from the program we use the parameter 1 which causes syscall to
print out the value in register $a0.

.text

main:

la $a1, X

lw $a0, ($a1)

li $v0, 1

syscall #print out the current value in $a0

li $v0, 10

syscall #halt the program

.data

X: .word 5

If you run SPIM on this file the number 5 will be output on the command line. There is
no newline between the output and the command prompt. We can get SPIM to output a
newline as a print string, as we shall discuss in more detail below. We declare a variable
cr which holds the string \n.

.text

main:

la $a1, X
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lw $a0, ($a1)

li $v0, 1

syscall #print out the current value in $a0

la $a0, cr

li $v0, 4

syscall #print out the current value in $a0

li $v0, 10

syscall #halt the program

.data

X: .word 5

cr: .asciiz "\n"

Be careful not to confuse an address and its contents. The following code will cause
SPIM to print out the address X not its contents as maybe mistakenly expected.

.text

main:

la $a0, X

li $v0, 1

syscall #print out the current value in $a0

la $a0, cr

li $v0, 4

syscall #print out the current value in $a0

li $v0, 10

syscall #halt the program

.data

X: .word 5

cr: .asciiz "\n"

7.7.2 Outputting character strings

It is useful to have SPIM print out messages in string format rather than in the numeric
representation. We use this feature for formatting and printing out comments. The
directive .asciiz is used to load a value which represents a specified character string.
The string is specified using double quotes, and SPIM loads the correct corresponding
value. The parameter 4 to syscall causes the value to be converted back to a character
string for printing.

If the following code is run with SPIM, Hello World! will be printed on the command
line. This string is stored in the variable str1 along with a following newline.

.text

main:

la $a0, str

li $v0, 4

syscall # print the string "Hello World!"

li $v0, 10

syscall #halt program

.data

str: .asciiz "Hello World!\n"

# .asciiz is a directive to indicate that the following

# is to be treated like a character string (null-terminated)
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Don’t forget to be careful with loops, as running the following program in SPIM will
demonstrate.

Example

.text

main:

loop: la $a0, string

li $v0, 4

syscall # Display String

j loop

li $v0, 10

syscall # halt program

.data

string: .asciiz "Hello again!\n"

Exercise Work out the behaviour of the following program and then run it through SPIM
to check your conclusions.

.text

main:

li $t0, 0

la $a0, X

lw $t1, ($a0)

loop: add $t0, $t0, $t1

addi $t1, $t1, -1

bne $t1, 0, loop

move $a0, $t0

li $v0, 1

syscall # display $a0

li $v0, 10

syscall # halt program

.data

X: .word 4

7.7.3 Selected assembly instructions

The following is a table of the SPIM syscall operations we shall use in the examples in
this course.

$v0 Task executed

1 Read value stored in $a0 and print it out.
4 Read address stored in $a0 and print out character string

starting at that address until a zero byte is encountered.
10 Stop program.

The following is a list of some MIPS instructions with descriptions of their behaviour.

add d, s1, s2 d = s1 + s2

sub d, s1, s2 d = s1 - s2

li d, c load immediate (move constant i to register d)

addi d, s1, i d = s1+i

j label jump to the instruction at the label
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beq s1, s2, label branch conditionally if s1 = s2

beqz s, label branch if s = 0

bge s1, s2, label branch if s1 >= s2

bgez s, label branch if s >= 0

la d, address load address (load the address of the

given location to register d)

lb d, address load byte

lw d, address load word

sw d, address store word

move d, s move contents of register s to register d

There are similar definitions for bgt and bgtz (>, greater than), ble and blez (≤, less
than or equal to), blt and bltz (<, less than), bne and bnez (6=, not equal to).
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Finite state automata and regular languages

We have seen that computers can be built from very simple structures, for example NAND
gates. The power of a computer comes from the way the gates are combined and used.
We can ask the opposite question, is there any limit to the things computers can do? This
question has its origins in the early 20th century with Godel’s Incompleteness Theorem.
We shall return to this at the end of the course. To study the potential and limitations
of computation it is instructive to consider a machine abstractly as having internal state,
and computation as moving from one state to another in response to input. This notion
is formalised as automata theory.

In this chapter we study the simplest form of automaton, a finite state automaton,
NFA.

As well as abstract models of computation, finite state automata are used directly in
compilers. They are used to specify and recognise the ‘words’ of the programming lan-
guage. Most modern programming languages allow the user to have any string of letters
and integers (beginning with an integer) as the name of a program variable. There are
infinitely many such strings (although in practice on any given computer there will be
a maximum length of string that can be stored). Since the string length is a computer-
defined limitation, the programming language usually allows any such string to be a vari-
able name.

In general a program is a sequence of words, some of these words look like English
words, such as the keywords while and function, but often other character strings such
as <= are words. To run a program on a computer we first have to get the computer to
read in the program and translate it into the computer’s execution language. This process
is known as compilation.

When a compiler reads an input program it sees a stream of input characters, and
one of the first things it has to do is to identify the words. The person who designed the
programming language has to ‘tell’ the compiler what the words in the language are, and
this means defining some sets.

One way to define a class of sets is to use a regular expression, and this is the method
that language designers often use for defining the words of a programming language. In
this chapter we shall discuss regular expressions, and the finite state automata which
represent them.

(You can read more about regular expressions and finite state automata in the book
by Hopcroft and Ullman listed at the end of the Introduction, although the notation and
conventions used in that book are slightly different from those we use here. You can read
more about computer language definition and recognition in Compiler Theory: Principles,
Tools and Techniques, by Aho, Sethi and Ullman, although this book is more advanced
than is required for this course.)
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Finite state automata and regular expressions turn out to be different ways of looking
at the same thing. We begin by discussing regular expressions.

8.1 Regular expressions

An alphabet is any set of symbols. For computer languages the alphabet is usually a set
of things that you can type from a keyboard, such as the ASCII characters, but any finite
set of symbols can be used.

Words on the alphabet are strings of elements (letters) from the alphabet. So if
A = {a, b, c, d, 1, 2} is our alphabet then

abba, b, 1ab2, ccc

are all words on A.

Definition The set of all strings on an alphabet is called the Kleene closure, and it is
written A∗. So we have

A∗ = {a1 . . . an | n ∈ N, ai ∈ A} and X∗ = {u1 . . . un | n ∈ N, ui ∈ X}, where X ⊆ A

The string with no letters is a string, and it is written ε.

Definition If we have two strings we can form another one by concatenating them,
writing them next to each other. So we have that abba1ab2 is the concatenation of abba
and 1ba2.

The empty string acts like 1 in multiplication, for any string α, we have αε = α = εα.

We use common abbreviations from the standard multiplication notation, a3 for aaa
etc.

Definition For sets X and Y we write

XY = {αβ | α ∈ X,β ∈ Y }

So XY is the set that can be obtained by concatenating an element from X with an
element from Y .

For example,

X = {abba, ac1e, ε} and Y = {cd, b, abba}

XY = {abbacd, ac1ecd, cd, abbab, ac1eb, b, abbaabba, ac1eabba, abba}

Sometimes we want all the strings on an alphabet except for the empty string, and we
have a special notation, A+, for this:

A+ = A∗\{ε}

For any set of strings X, X+ denotes the set of all concatentations of one or more
elements from X. If ε 6∈ X then

X+ = X∗\{ε}

We can use regular expressions to denote certain types of subsets of the set of strings
on a language A.
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For the letters in A we use the letter itself to denote the set which contains just that
letter. So we write a for the set {a} which just contains a. Similarly, we write ε for the
set {ε} which just contains the empty string.

(Careful, the set {ε} is NOT the same as the empty set, {ε} contains one element, ε, but
the empty set contains no elements. Just as {0} is not the same as the empty set.)

We define other regular expressions recursively, so if we already have two regular
expressions we describe how to construct others from these, using concatenation, set union
and Kleene closure.

8.1.1 Formal definition of regular expressions

Formally, a regular expression denotes a set of strings and we define what a regular ex-
pression is by defining which set of strings it represents.

1. ε is a regular expression which denotes the set containing just ε.

2. For a ∈ A, a is a regular expression which denotes the set {a}.

If r and s are regular expressions then:

3. rs is a regular expression which denotes the set of strings which are formed by
concatenating a string from r with a string from s.

4. r∗ is regular expression which denotes the set of strings which are sequences of zero
or more strings from r concatenated together.

5. r|s is a regular expression which denotes the union of the sets r and s, the set of
strings which are either a string from r or a string from s.

By convention ∗ has highest priority then concatenation and then |. So ab | aab∗ means
(ab) | ((aa)(b∗)).

8.1.2 Examples

The set of positive integers is

(1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)(0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)∗

The set of integers is

( − | ε )(1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)(0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)∗ | 0

The set of one or more as followed by an arbitrary number of bs is

a a∗ b∗

What is the set of elements denoted by a(a∗|b∗)
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8.1.3 Equality of regular expressions

There may be many ways of denoting the same regular expression.

a|a and a both denote {a}, and a(b|c) and ab|ac both denote {ab, ac}.

Definition Two regular expressions, r and s, are equal if they denote the same language.

r|s = s|r, r|(s|t) = (r|s)|t, r(s|t) = (rs)|(rt), rε = r, etc.

We can write r|s|t because (r|s)|t = r|(s|t). To decide what rs|t means we have
operator priority, concatenation has higher priority than |. So rs|t means (rs)|t not r(s|t).

Exercises Which of the following equalities are true? (i) ab(ab)∗ = (ab)∗ab,
(ii) ab(ab)∗ = a(ab)∗b, (iii) ab(b | ε)c = abbc | abc, (iv) a∗a∗ = a∗, (v) aa∗ = a∗

8.2 Finite state automata

We can define sets using regular expressions, but if we use regular expressions to define
things like the identifier names in a programming language then the compiler must be
able to test whether a given particular input string belongs to a regular expression. For
example, it needs to be able to tell that fred is an identifier name and 3451 is an integer.

It is not always easy even for a human to tell whether a string belongs to a regular
expression. For example, do the strings aaaabababa and aababababab belong to the
regular expression

a∗ ( (a b a)∗ | b) (b a)∗

It can also be hard to describe all the strings of a regular expression. For example,
what strings are denoted by

( 0 0∗ | 1 0 | 1 1 (0 0 | 1)∗)(1∗ | 0 (0 | 1 0)∗ | 0 1 1)∗ | 1 0∗

It turns out that regular expressions correspond to finite state automata, and we can
use finite state automata to test whether or not a given string belongs to a given regular
expression.

A finite state automaton (FA) is a directed graph whose edges are labelled with alphabet
letters or ε. The edges are often call transitions and the nodes are often called states. One
of the nodes is the start state and some of the nodes are accepting states.

The following is a finite state automaton. The start state is state 0 and the accepting
states, 3 and 5, are denoted by double circles.
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Then δ(0, a) = {1}, δ(2, ε) = {3, 4}, δ(2, a) = ∅, etc.

Definition Formally, a finite state automaton (FA) is a set, V , of states, a set A of symbols
(letters), a transition relation δ ⊆ (V × (A∪{ε}×V ) (the edges with their labels), a start
state s0 ∈ V and a set F ⊆ V of accepting states. An FA is often written as a 5-tuple
(V,A, δ, s0, F ). This formal definition is needed for reason about FAs.
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8.2.1 Traversing an FA

We can traverse an FA using an input string, that is a sequence of letters terminated by
the special end-of-string symbol $.

For example, we traverse the above FA with the string babXbbbX$ as follows. We start
in the start state, 0, and read the first symbol b. There is a transition labelled b from
state 0 to state 2, so we go to state 2 and read the next input symbol, a. There are ε
transitions from state 2 to states 3 and 4, we choose to go to state 3. We then choose to
follow the transition labelled a to state 7, and we read the next input symbol b. We then
go to state 5 and read the next input symbol X, then we go to state 6 and read the next
input symbol, b. We choose to go round the loop back to state 6, and we read the next
input symbol b. We then choose to go to state 7 and read the next b, then we go to state
5 and read the next input symbol, X. We could choose to go to state 6 and read the next
input symbol, but we don’t. We choose to follow the ε transition to state 4. Because it
is an ε transition we don’t read the next input symbol and the current symbol is still X.
We now go to state 3 along the X transition and read the last input symbol, $. State 3 is
an accepting state and the current symbol is $, so the string is accepted and the process
reports success.

Formally:
• At any given point in the FA traversal process there is a current state, s, and a current
input symbol, a.
• At the start of the process s is set to be the start state and the current symbol, a, is set
to be the first symbol of the input string.
• At each step in the process we can choose to change the current state to be any state
which can be reached from the current state along a transition labelled with the current
input symbol or with ε.
• If we move along a transition labelled with the current input symbol then the next input
symbol is read and set to be the current input symbol.
• If the current state is an accepting state and the current input symbol is the end-of-string
symbol $, the input is accepted and the process terminates and reports success.
• If there are no transitions from the current state labelled with the current input symbol
or ε then the process terminates and the input string is not accepted, unless the current
input symbol is $ and the state is an accepting state.

For example, if we traverse the above FA with the input string a$ we end up in state
1 with the current input symbol $. But since 1 is not an accepting state, the string is not
accepted.

We now have another way of defining a set of strings, we can use FAs.

Definition The set of strings which are accepted by an FA is the language defined by that
FA.

Exercise Traverse the above FA with inputs: a$ b$ ba$ bba$ babXbbbX$

8.3 Thompson’s construction

In this section we shall show that for every regular expression r there is an FA which
has the set denoted by r as its language. Furthermore, we shall give an algorithm for
constructing such an FA.

It is easy to see that the following DFA, whose start state is 0, has language {a}, the
set denoted by the regular expression a.
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It is also easy to see that the following FAs have languages (a | b) and (a | b)∗ respec-
tively.
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These aren’t the most obvious FAs. If we just wanted the FA for (a | b) we would
probably write

��� ���0 1����a
:b
z

But the point is that the above FAs can be constructed by a formula that applies to any
regular expression. (If r and s are regular expressions for which we already have FAs
then we can generate an FA for the regular expression (r | s) by making new start and
accepting states and join these to the start and accepting states of the FAs for r and s,
see below). If there is a formula for the construction then this can form the basis of a
computer program which automatically constructs an FA for a regular expression.

Once the computer can construct the FA we can also write a program to traverse the
FA with an input string and we will have a program the can recognise the words of a
programming language!

The formula for constructing an FA for a regular expression is inductive and uses the
inductive definition of regular expressions. The method is call Thompson’s Construction.

The regular expression ε corresponds to the transition diagram
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s1������
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--start

ε

The regular expression a, where a ∈ A, corresponds to the transition diagram
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If p, q are regular expressions with corresponding NFAs Mp,Mq then:
pq (concatenation) is represented by
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that is the two machines in series joined by an empty transition.

p | q (alternation or union) is represented by
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p∗ (Kleene closure) is represented by
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the machine for p with new start and finish states, all joined by empty arrows.

Example Using Thompson’s construction for the regular expression (a | b) a (b | ε)∗ we
get the FA
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Exercises Use Thompson’s construction to find an FA for the regular expressions: 1. a | b
2. (a | b)∗ 3. a | b | c (i.e. (a | b) | c) 4. (a | b | c)∗ 5. (a | b)∗a 6. a∗b∗

8.4 Deterministic finite state automata (DFA)

We need to be careful with the above definition of the language of an FA. If a string is
accepted by an FA traversal then it is in the language of the FA. However, if the string is
not accepted by the FA it may still be in the language of the FA because there may be a
different traversal which does result in acceptance.

The problem is that there are choices that can be made during a traversal. If a state
has more than one transition labelled with a particular symbol then the traverser can
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choose to take any of these transitions. Also, if the state has an ε transition then the
traverser can choose this transition whatever the current input symbol is.

To be sure that when the traverser does not accept a string that string is not in the
language we need the FA to be deterministic, i.e. for there to be no choices during the
traversal.

Definition A deterministic finite state automaton is an FA with the property that there
are no ε transitions and that for any symbol a there is at most one transition labelled a
from each state in the FA.

Equivalently, the relation δ ⊆ (V ×(A∪{ε})×V ) is actually a function δ : (V ×A)→ V .

The above FA is not deterministic, but the following is a DFA which defines the same
language.
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8.4.1 The subset construction

The problem with FAs built by Thompson’s construction is that they can be non-deterministic,
and so if we have an input string which is not accepted by the FA it may none-the-less be
a string in the language of the FA.

Deterministic FAs do not have this problem, because there is only one possible traversal
of a DFA with a given input string. Every DFA is an FA, but there are FAs which are
not DFAs. So it is possible, in principle, that there are languages which can be specified
by an FA which cannot be specified with a DFA. However, it turns out that this is not
the case, and that for every FA there is an equivalent DFA. Furthermore, there is an
algorithm which, given an FA, constructs an equivalent DFA. This means that, for any
regular expression, we can use a DFA to decide whether any given string is in the regular
expression.

The algorithm which takes an FA and returns an equivalent DFA is called the subset
construction. It works by combining together the FA states which can be reached on a
given input.

Let N be an NFA, and let D denote the DFA we are trying to construct. The states of
D are sets of states of N . The sets are generated by looking for the subset of states that
can be reached by making any number (including zero) ε transitions from states in N .

We need the following notation. If s is a state in our NFA, T is a set of such states,
and a ∈ A then

ε− closure(T ) is the set of NFA states reachable from the NFA states in T via ε-transitions
alone.

Ta is the set of NFA states to which there is a transition on input symbol a from some
state s in T .

The general algorithm for constructing the required DFA D is as follows:
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• The start state, T0, of D is ε-closure({s0}), the set of states which can be reached from
the start of N by just using ε arrows.

• Then for each a ∈ A, calculate T0a – the set of states from N which can be reached from
states in T0 along an arrow labelled a.

• If T0a is not empty, form the ε-closure of this by adding all the other states which can
be reached from states in T0a along ε arrows. So we have a new state T1 = ε-closure(T0a)
in D.

• We then put a transition labelled a from T0 to T1, defining δD(T0, a) = T1, and ‘mark’
the state T0 as having been dealt with.

• We then repeat the process for each one the new states that we have constructed. So
for every a ∈ A we form T1a, the set of states reachable using an a arrow from a state in
T1, and then we calculate ε-closure(T1a) etc.

• When all the states Ti that we have constructed are also marked as having been dealt
with then the construction of D is complete.

• The start state of D is the state T0 which contains the start state of N . A state in D is
an accepting state if it contains at least one accepting state from N .

Example The subset construction on the NFA for (a | b) a (b | ε)∗ given above gives the
following sets.

T0 = ε-closure({0}) = {0, 1, 3} T0a = {2} T0b = {3}
T1 = ε-closure(T0a) = {2, 5, 6} T1a = {7} T1b = ∅
T2 = ε-closure(T0b) = {4, 5, 6} T2a = {7} T2b = ∅

T3 = ε-closure(T1a) = {7, 8, 9, 10, 12, 13, 14, 15} T3a = ∅ T3b = {11}
ε-closure(T2a) = T3

T4 = ε-closure(T3b) = {11, 14, 15, 9, 10, 12, 13} T4a = ∅ T4b = {11}
ε-closure(T4b) = T4
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Exercises Use Thompson’s construction and the subset construction to find a DFA for
each of: 1. a | b 2. (a | b)∗ 3. (a | b | c)∗ 4. a∗b∗

8.5 A lexical analyser

We can now see how we could write a computer program which takes as input a set
defined using a regular expression and a string, and output ‘accept’ if the string is in the
set denoted by the regular expression and output ‘reject’ otherwise.

We use Thompson’s construction to construct an FA and then the subset construction
to construct an equivalent DFA.

We then write the DFA as a table. The rows of the table are indexed by the states of
the DFA, by convention the first row is indexed by the start state, and the columns of the
table are indexed by the alphabet symbols and the special end-of-file symbol $.
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It there is a transition labelled a from state s to state t then we put t in row s, column
a of the table. If s is an accepting state then we put acc in row s, column $.

So the table version of the DFA from Section 8.4 is

$ a b X

T0 T1 T2
T1
T2 acc T3 T2 T4
T3 acc T5 T6
T4 acc T3 T2
T5 acc T6
T6 acc T3 T7
T7 acc T3 T8 T4
T8 acc T3 T8 T6

Then a simple program walks the table using an input string.

Input: a DFA, with start state s0, written as a table T, and a string

a1 a2 ... an $

Set symbol := a1; state := s0; flag := 1

While (flag = 1) {

if (T(state, symbol) is empty) { set flag := 0}

else { if (symbol = $) {set flag := 0} }

else { state := T(state,symbol)

symbol := next input symbol; }

}

if (T(state,current) = acc) then {return accept}

else {return reject}

8.6 The LEX lexical analyser generator

The UNIX system has a program LEX which does exactly what we have described above.
You give it a regular expression and it constructs a DFA based recogniser.

Using the editor, create a file ‘example.l’ that is the input to LEX. Then type ‘lex
example.l’ and LEX creates the file lex.yy.c which is written in C. This file is then run
through a C compiler, you can use the command ‘gcc lex.yy.c -ll’, which produces a
program called a.out. This is the lexical analyser.

input ‘example.l’ −→
LEX

−→ lex.yy.c

input lex.yy.c −→
C compiler

−→ a.out

input character stream −→
a.out

−→ tokens

An input file for LEX, a LEX program, has three parts: declarations, rules and auxil-
iary procedures. Each part of the program is separated by a line ‘%%’.

LEX program format:
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declarations
%%
rules
%%
auxiliary procedures

Any of the three parts may be empty but the first line of separators cannot be left out,
and we shall not be using the auxiliary procedures section.

The declarations section containd the definitions of the regular expressions. The rules
section is a list of statements of the form p {action}, where action is a program fragment
written in C that describes what should be done if an input string belongs to p. The third
section contains any auxiliary procedures that may be needed by the actions.

LEX is designed to generate the first stage of a compiler and the rules and procedures
sections support this role. In this course we simply use LEX to experiment with regular
expressions and we only use the rules section, and the productions section to print out a
message.

You can give LEX several regular expressions and it will test each in turn to see if it can
find one that matches your input string. The following is a very simple LEX program that
generates a lexical analyser which recognises decimal numbers and identifiers composed of
lower case letters and digits, beginning with a letter.

identifier [a-z]([a-z]|[0-9])*

number [1-9][0-9]*(\.[0-9][0-9]*)?

%%

{number} {printf("number\n") ;}

{identifier} {printf("identifier\n") ;}

%%

Here we type \. because ‘dot’ is a special symbol in LEX and we want the literal. LEX
has some shorthands, for example [a-z] stands for all of the lower case letters. LEX also
uses ? for optional, so (r|ε) is written r?. Finally, so that LEX can decide when strings
are the names of regular expressions these are enclosed in braces, {}, when they are used.

Create a file ex1.l, then type lex ex1.l. This produces lex.yy.c, so type gcc lex.yy.c -ll
to produce a.out. Then if you type a.out and then 1.02 you will get ‘number’ printed on
the screen. If you type 1.02 fred1 temp1 then ‘number’ ‘identifier’ ‘identifier’ will appear
on the screen.

teaching$ lex ex1.l

teaching$ gcc lex.yy.c -ll

teaching$ a.out

teaching$ 1.02 fred1 temp1 = eas

number identifier identifier = identifier

Unrecognised character strings are echoed. So if you type < then < will be repeated back
to you.

Try playing with LEX

8.7 Not every set can be defined by a regular expression

Unfortunately there are some sets that we need to study and use which cannot be de-
fined using regular expressions, and hence which cannot be recognised using finite state
automata.
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For example, most programming languages allow you to write mathematical expres-
sions such as

1 + fred− 3 ∗ john

It is possible to write a regular expression which describes the set of all mathematical
expressions which can be formed from integers, identifiers and +,−, ∗,÷. However, we need
parentheses in the arithmetic expressions to over-ride operator priorities. For example,
3 ∗ 4 + 1 evaluates to 13, we need parentheses to specify 3 ∗ (4 + 1) which equals 15.

It turns out that it is not possible to write a regular expression which specifies arith-
metic expressions that include parentheses in the normal way. The parentheses must be
balanced in the sense that every left parenthesis must have a matching right parenthesis,
and this means that there must be the same number of left and right parentheses.

This is a general problem for regular expressions. For example, a∗b∗ is a regular
expression whose set is the set of all strings anbm where n,m are natural numbers. But
there is no regular expression for the set of strings anbn, which is any number of as followed
by the same number of bs.

We now give a proof of this fact, which is often expressed by saying ‘regular expressions
can’t count’. This shows that not all sets can be defined using regular expressions.

Theorem 1 The set {anbn | n ∈ N} = L is not the language of any DFA and hence
cannot be defined using a regular expression.

Proof The proof is by contradiction. We assume that there is a DFA which accepts
precisely the strings of the form anbn and show that the DFA will also accept a string
of the form an+mbn for some integer m > 0. This will then be a contradiction of the
assumption that the DFA accepts only strings with the same number of as and bs.

Suppose that there is a DFA whose language is L, and suppose that the DFA has k
states. The DFA must accept the string ak+1bk+1 so there must be a path through the
DFA from the start state to an accepting state whose first k+ 1 edges are labelled with a
and whose second k + 1 edges are labelled with b.
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Since the DFA has only k states, two of the states 0, n0, . . . , nk must be the same. Suppose
that nj = ni where j < i. So j + r = i and r > 0. Since there is only one edge labelled a
whose source state is nj we must have nj+1 = ni+1. The same argument then gives that
nj+2 = ni+2. Carrying on in this way we see that we must have nk−r = nk.

Thus there is a path
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in the DFA, and so the DFA also accepts the string ak+1+rbk+1. Since r > 0 this string
is not in L, contradicting the assumption that the DFA accepts precisely the strings in L.
Thus there can be no DFA whose language is L.

To specify the language of arithmetic expressions which include parentheses, we can
use context free grammars, the topic of the next chapter.
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8.8 Look up on the WEB

Stephen Kleene Born in America in 1909, Kleene proved that regular expressions
and finite state automata are equivalent. It is also said that he discovered a previously
unknown type of butterfly, which was named after him.

8.9 Exercises

1. Write out the set defined by the regular expressions
(i) (a | b)(b | ε)cb, (ii) (0 | 1)10(1 | 0)0, (iii) (a | a)ab(b | b)a, (iv) (abc | a)(b | ε)bc.

2.(i) Write down a regular expression for the set of all strings of a of even length.
(ii) Write down a regular expression for the set of all strings of a and b that contain exactly
one a.
(iii) Write down a regular expression for the set of all strings of a and b that start and end
with the same symbol.

3. Write out the set defined by the regular expression a b (b | ε | a) ( b | b ).

4. Write down a regular expression whose set is the set of strings of 0s and 1s of even
length.

5. Write down a regular expression whose set is the set of strings of 0s and 1s of odd
length.

6. Write down a regular expression whose set is the set of strings which contain an even
number of 0s and an even number of 1s.

7. Use Thompson’s construction to construct an FA for the regular expression
( a∗ b ( a | b )∗ ) ( a | ε ) | a.

8. Use the subset construction to construct a DFA for the FA you constructed in Ques-
tion 7.

9. Prove that the set {an b c2n | n ∈ N } cannot be defined by a regular expression.





Chapter 9

Pushdown automata and Turing machines

In Chapter 8 we saw that regular expressions can be represented using finite state au-
tomata, and that these automata can be used to test whether a string belongs to a par-
ticular regular expression. We would like a similar method which allows us to recognise
wider lasses of sets, including arithmetic expressions with brackets.

It turns out that bracket matching this is harder. For regular expressions we could
construct a deterministic DFA which can then be used without backtracking in linear time.
We can use push down automata, that is DFAs with a stack, to recognise languages with
bracket matching, but PDAs are not always deterministic.

In this chapter we define and discuss PDAs, and then we look at Turing machines,
which can describe all computable sets. You can read more about push down automata
the book by Hopcroft and Ullman listed at the end of the Introduction, although again
the notation and conventions used in that book are slightly different from those we use
here.

9.1 Pushdown automata

A pushdown automaton (PDA) is a finite state automaton together with a stack. The
actions performed are traversing transitions, as for FAs, and additionally pushing symbols
on to the stack and popping symbols off the stack. The action taken depends on the
symbol currently on the top of the stack, the current input symbol, and the current state
of the FA.

For FAs we described the actions using the graphical representation of the FA. We
could do this because the only actions are transitions, represented by arrows in the graph,
and acceptance, represented with double lines on the nodes. For a PDA we also have to
define stack push and pop actions, so we can’t just use the FA graph.

To specify a PDA we have to specify

� a set Σ of symbols that can labelled the transitions,

� a set S of states of the underlying FA,

� a start state S ∈ S,

� a set F ⊆ S of accepting states,

� a set ∆ of symbols that can be pushed onto the stack,

� a set of actions.
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The special end-of-symbol $ is always put on the bottom of the stack. A string is
accepted by the PDA if all the input has been read, so the current input symbol is $, and
the current state is an accepting state.

Sometimes acceptance is defined by saying that the current input symbol is $ and the
only symbol on the stack is $. Both definitions allow exactly the same sets to be defined,
although different PDAs need to be used for empty stack acceptance. We shall use the
final acceptance state definition of acceptance, i.e. the input symbol is $ and the current
state is an accepting state.

It is easy to construct a PDA which accepts precisely the strings of the form anbn where
n ≥ 1. We have three states, q which is the start state, p and r, and r is the accepting
state. There are two input symbols a, b and one stack symbol δ. The actions are given in
terms of the current state, input symbol and stack top, as follows:

� (q, a, $) – push δ onto the stack, goto state q and read the next input symbol

i.e. if the current state is q, the current input is a and the current stack top is $, we
can push δ on to the stack and goto state q.

� (q, a, δ) – push δ onto the stack, goto state q and read the next input symbol

i.e. if the current state is q, the current input is a and the current stack top is δ, we
can push δ on to the stack and goto state q.

� (q, b, δ) – pop δ off the stack, goto state p and read the next input symbol

i.e. if the current state is q, the current input is b and the current stack top is δ, we
can pop δ off the stack and goto state p.

� (p, b, δ) – pop δ off the stack, goto state p and read the next input symbol

i.e. if the current state is p, the current input is b and the current stack top is δ, we
can pop δ off the stack and goto state p.

� (p, ε, $) – goto state r

i.e. if the current state is p and the current stack top is $, we can goto state r.

In this case we can think of the PDA graphically, labelling the transitions with the
input symbol to be read, the stack top required, and with the appropriate pop and push
actions.

���q p r���� ���� ����
K K(a, δ), push(δ)

(b, δ), pop
(a, $), push(δ)

- -
(b, δ), pop (ε, $), ∅

There are no push or pop actions associated with the transition from p to r so this is
denoted by the empty set ∅.

Each time a symbol a is read a δ is pushed onto the stack. Then each time a b is read
a δ is popped off the stack. If the same number of bs are read as as then at the end the
stack will have $ on top and the string will be accepted.

The following sequence of moves shows the current state and current stack when the
above PDA is run on the string a2b2.

(q, ($)) →
a

(q, ($, δ)) →
a

(q, ($, δ, δ)) →
b

(p, ($, δ)) →
b

(p, ($))
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9.1.1 Formal definition of a PDA

Formally PDA actions are represented as a transition function f from the set S × (Σ ∪
{ε})×∆ to the set of finite subsets of S ×∆∗. So for a state p, an input symbol a and a
stack symbol δ, we define f(p, a, δ) as a set of elements of the form (r, (δ1, . . . , δm)).

Then when the current state is p, the current input is a and the current stack top is
δ, we choose an element (r, (δ1, . . . , δm)) ∈ f(p, a, δ). Then we pop δ off the stack, push
δ1, . . . , δm onto the stack, read the next input symbol and move to state r.

A string is accepted by PDA if it is accepted for some choices of elements. The set of
accepted strings is the language recognized by the PDA.

Technically, every action pops the top symbol off the stack, so every action pops one
symbol and pushes zero or more symbols. In our informal description we allowed an action
to pop nothing, but we can always do this in the formal way by pushing back on the symbol
we have just popped.

The above PDA for the language {anbn | n ∈ P} is written formally as

Σ = {a, b}, S = {q, p, r}, S = q, F = {r}, ∆ = {δ, $}

f(q, a, δ) = {(q, (δ, δ))}
f(q, a, $) = {(q, ($, δ))}
f(q, b, δ) = {(p, ε)}
f(p, b, δ) = {(p, ε)}
f(p, ε, $) = {(r, $)}

Note, we can perform an action without reading an input symbol, this is equivalent
to traversing an ε-arrow in an FA. Such actions are specified by writing ε instead of the
input symbol for the second argument of the function f .

For example, the PDA

Σ = {a, b}, S = {q, p, r}, S = q, F = {r}, ∆ = {δ, $}

f(q, a, δ) = {(q, (δ, δ))}
f(q, a, $) = {(q, ($, δ))}
f(q, ε, δ) = {(p, δ)}
f(p, b, δ) = {(p, ε)}
f(p, ε, $) = {(r, $)}

also accepts precisely the set of strings {anbn | n ∈ P}. Graphically, the PDA can be
thought of as

���q p r���� ���� ����
K K(a, δ), push(δ)

(b, δ), pop
(a, $), push(δ)

- -
(ε, δ), ∅ (ε, $), ∅

However, the first PDA for {anbn | n ∈ P} is preferable to the second one because the
first one is deterministic.

9.1.2 Deterministic and non-deterministic PDAs

Definition A PDA is deterministic if, for every state p, every input symbol b and stack
symbol γ, f(p, b, γ) contains at most one element, and if, for some c, f(p, c, γ) is not empty
then f(p, ε, γ) is the empty set.

The point here is that for a deterministic PDA there is always at most one choice
of action for a given state, input symbol and stack top. So for deterministic PDAs we
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traverse the PDA using an input string and this traversal will result in acceptance if and
only if the string is in the language defined by the PDA.

For a non-deterministic PDA it is possible for the traversal to stop without success even
though the string is in the language. For example, for the second PDA for {anbn | n ∈ N}
we can traverse the PDA with the string a2b2 using the steps

(q, ($)) →
a

(q, ($, δ)) →
ε

(p, ($, δ))

At this point the next input symbol is a but f(p, a, δ) = ∅ so there are no further steps
that can be carried out. As the input symbol is not $, the string is not accepted.

The following is a straight-forward algorithm for determining whether or not a given
string is accepted by a deterministic PDA.

set cs to the start state

set stack = $ and ct to $

set flag to 1

set ci to be the first input symbol

while (ci is not $) and (flag==1) {

if (p, ct) is in f(cs,ci,ct) {

set cs = p

set ci to be the next input symbol }

else

if (p, (ct,y)) is in f(cs,epsilon,ct) {

set cs = p

set ct = y

push y onto stack }

else

if (p, epsilon) is in f(cs,epsilon,p) {

set cs = p

set ct = pop stack }

else { set flag=0 }

}

if ( (flag = 1) and (cs is accepting) ) {accept the string}

else {reject the string}

However, this algorithm does not work for non-deterministic PDAs because it may reject
a string because it made a wrong choice at a point of non-determinism.

Example The following PDA accepts precisely the non-empty palindromes of even length
on the letters a and b. (That is strings of the form ααT where αT is obtained by reversing
the letters of α.)

The idea is that as the elements of the first half of the string are read they are pushed
onto the stack. Then as the second half of the string is read the symbols are popped off
and matched to the input symbols. Thus in this example the stack symbols are the same
as the input symbols.

Σ = {a, b}, S = {q, p, r}, S = q, F = {r}, ∆ = {a, b, $}
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f(q, a, a) = {(q, (a, a)), (p, ε)}
f(q, a, b) = {(q, (b, a))}
f(q, a, $) = {(q, ($, a))}
f(q, b, a) = {(q, (a, b))}
f(q, b, b) = {(q, (b, b)), (p, ε)}
f(q, b, $) = {(q, ($, b))}
f(p, a, a) = {(p, ε)}
f(p, b, b) = {(p, ε)}
f(p, ε, $) = {(r, $)}

This PDA is non-deterministic because for some configurations there is a choice of
action, for example when the current state is q and the current input symbol and stack
top are both a we can use the action (q, (a, a)), pushing a on to the stack and staying
state q, or we can use the action (p, ε), popping the a off the stack and moving to state p.

We can traverse this PDA with the string aabbaa using the steps

(q, $) →
a

(q, ($, a)) →
a

(q, ($, a, a)) →
b

(q, ($, a, a, b)) →
b

(p, ($, a, a)) →
a

(p, ($, a)) →
a

(p, $) →
ε

(r, $)

Since, at the end, the input symbol is $ and the current state is r, an accepting state, the
string aabbaa is (correctly) accepted.

Non-deterministic PDAs

There do exist algorithms which determine whether a given string is in accepted by any
(non-deterministic) PDA. But none of these algorithms runs in linear time. The most
common of these algorithms proceed by computing in parallel the different execution steps
which can be taken at points of non-determinism. If this is not done carefully, the resulting
algorithm can be of worst case exponential complexity and this is completely impractical.
However, it is possible to construct algorithms which have worst case cubic complexity. A
well known algorithm was given by Jay Earley in 1970, who was interested in constructing
efficient parsers for natural language applications. An algorithm which computes in worst
case cubic time whether or not a string is accepted by a given non-deterministic PDA was
given by Lang in 1974.

The PDA for {anbn | n ∈ P} at the start of this section is a deterministic PDA which
corresponds to the non-deterministic one. However, there exist non-deterministic PDAs
for which there is no corresponding deterministic PDA. In fact, we have the following
theorem.

Theorem 2 The language {anbm | n ∈ N,m = n or m = 2n} is not the language accepted
by any deterministic PDA.

Regular expressions are used to define the words of a programming language, the
sentences are defined using a context free grammar. Context free grammars correspond
to pushdown automata in the same way that regular expressions correspond to finite
state automata. The fact that there exist non-deterministic PDAs for which there is
no corresponding deterministic PDA means that parsing, the recognition of languages
generated by context free grammars, is a more difficult problem than lexical analysis, the
recognition of languages generated by regular expressions. This has important implications
for the design of compilers, and the constraints that this puts on grammars fundamentally
influences the structure and style of modern programming languages. Pioneering work on
parsing of programming languages was done by Don Knuth in the 1960s. Knuth defined a
form of PDA called an LR(1) PDA and proved that any deterministic PDA is equivalent
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to a some LR(1) PDA. We do not discuss context free grammars and the specification of
programming language syntax in this course.

9.1.3 Examples

Example The following PDA accepts precisely the language {anbn | n ∈ N} (this language
includes the empty string, ε).

Σ = {a, b}, S = {q, p, r}, S = q, F = {r}, ∆ = {δ, $}

f(q, a, δ) = {(q, (δ, δ))}
f(q, a, $) = {(q, ($, δ))}
f(q, ε, $) = {(r, $)}
f(q, b, δ) = {(p, ε)}
f(p, b, δ) = {(p, ε)}
f(p, ε, $) = {(r, $)}

The corresponding graphical representation is

���q p r���� ���� ����
K K(a, δ), push(δ)

(b, δ), pop
(a, $), push(δ)

- -
(b, δ), pop (ε, $), ∅

(ε, $), ∅
z

Example The following PDA accepts precisely the palindromes of odd length on the
letters a and b. (That is strings of the form αxαT where αT is obtained by reversing the
letters of α and x is either a or b.)

Σ = {a, b}, S = {q, p, r}, S = q, F = {r}, ∆ = {a, b, $}
f(q, a, a) = {(q, (a, a)), (p, a)}
f(q, a, b) = {(q, (b, a)), (p, b)}
f(q, a, $) = {(q, ($, a)), (p, $)}
f(q, b, a) = {(q, (a, b)), (p, a)}
f(q, b, b) = {(q, (b, b)), (p, b)ε)}
f(q, b, $) = {(q, ($, b)), (p, $)}
f(p, a, a) = {(p, ε)}
f(p, b, b) = {(p, ε)}
f(p, ε, $) = {(r, $)}

This PDA is again non-deterministic. We can traverse this PDA with the string abbba
using the steps

(q, $) →
a

(q, ($, a)) →
b

(q, ($, a, b)) →
b

(p, ($, a, b)) →
b

(p, ($, a)) →
a

(p, $) →
ε

(r, $)

Since, at the end, the input symbol is $ and the current state is r the string abbba is
(correctly) accepted.

9.2 The Chomsky hierarchy

We have seen that regular expressions are not powerful enough to describe all sets, there
is a set which is not definable with a regular expression. We have also seen that some sets
not definable by a regular expression can be defined by a PDA.
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It is thus reasonable to ask whether all sets can be defined by PDAs. The answer to
this questions is no.

Theorem 3 The set {anbncn | n ∈ N } cannot be defined by any PDA.

Classes of languages were studied by the linguist Noam Chomsky in the 1950s. He
defined four classes of sets (languages) for which there exist finite specifications.

The first class is the sets which can be defined by regular expressions, the regular
languages. The elements in a set in this class can be also described by a DFA.

The second class is the sets which can be the context free languages. The elements in
a set in this class precisely that sets that can be described by a PDA.

The third class is the sets which can be defined by grammars called context sensitive
grammars. Most languages that occur in practice are context sensitive, but there are some
sets which are not context sensitive but whose elements can be computed.

The fourth class is the sets which can be defined by grammars called phrase structure
grammars.

Each class of languages is a proper subclass of the next one. This is referred to as the
Chomsky Hierarchy.

regular
languages

context free

context sensitive

phrase structure

Phrase structure languages are precisely the sets that can be described with a Turing
machine, the topic of the rest of this chapter.

9.3 Machines Can Never Be Enough

In this section we look briefly at some of the issues which lie at the limits of computability.
It is important that computer scientists know that it is impossible for computers, or finitely
describable machines of any type, to be able to do everything that is mathematically
possible. In fact there exist sets for which it is impossible for any computer to compute
the elements of the set. It is thus impossible for computers, or finitely describable machines
of any type, to compute every function f of the type f :→.

9.3.1 Turing machines and Church’s thesis

It is not possible to give a formal definition of what we mean by saying that something is
mechanically calculable, or what we mean by a machine or a computer. Intuitively by a
machine or a computer we mean some sort of process whose behaviour in terms of input
and output can be described using a finite specification. This does not mean that the
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calculations the machine performs must always be finite, but the description of how the
machine can behave must be finite.

The famous mathematician and computer scientist Alan Turing spent some time
searching for a definition of a machine, and eventually he produced the definition of what
is now known as a Turing machine. We cannot prove that anything that we recognise
as a machine, or a mechanical process, can be represented by a Turing machine because
we cannot formally define the concept ‘anything that we recognise as a machine, or a
mechanical process’. However, every machine that anyone has ever thought of has been
shown to be representable as a Turing machine, including what initially appear to be more
powerful or more general versions of Turing machines themselves.

It is generally accepted that anything that could be considered to be a machine can be
represented by a Turing machine, and this belief is formally known as Church’s Thesis: if
a function f :→ is computable by any kind of finite machine, it is computable by Turing
machine.

Church’s Thesis implies that every machine that can be built is a Turing machine.
Thus for the purposes of reasoning about what can and cannot be computed by some
machine, we reason about what can and cannot be computed by a Turing machine.

Perhaps the most surprising thing about Turing machines is that their structure is
relatively simple, their definition is similar to that of pushdown automata.

A Turing machine has a set of states and a tape from which it can read and to which
it can write. The tape has a left hand end but is infinite to the right and all but finitely
many of the symbols on the tape are the special blank symbol B. The machine looks at
the current state and the symbol on the current position of the tape and then executes
an action on the basis of these two values. The action consists of writing a symbol to the
current tape position, moving the tape position one place to the left or to the right, and
moving to a specified state.

Definition A Turing machine is a 7-tuple (S,Σ,∆,f, S,B,F) where
S is a finite set of states and S ∈ S is the start state
∆ is a finite set of tape symbols, and B ∈ ∆ is a special blank symbol
Σ ⊆ ∆ is a finite set of input symbols
f is a (partial) function from S ×∆ to S ×∆×{L,R} which assigns actions to state, tape
configurations
F ⊆ S is a set of accepting states.

A Turing machine begins with a tape on which there are written finitely many (possibly
0) symbols from (∆\{B}), the remaining entries on the tape are all B.

a1 a2 a3 · · · · · · · · · an B B B B B · · ·

The initial input position of the tape is the first (left-most) position, reading the symbol x1
say, and the state is S. If f(S, x1) = (t, x2, R) then the machine replaces x1 with x2 on the
tape, moves the tape position one place to the right and makes t the current state. This
process continues until either the machine moves to an accepting state or there is no move
associated with the current state and input symbol. In the former case the initial string
written on the tape is said to be accepted by the Turing machine. If the machine reaches
a point where there is no action, or if the action would result in the pointer moving to the
left of the end of the tape, the initial string written on the tape is said to be rejected.

The language defined by a Turing machine is the set of strings that it accepts.

The Turing machines that we have defined are deterministic because there is at most
one choice of action for each state and input symbol. Thus we might believe that a Turing
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machine can deterministically calculate the language it defines. Since we have claimed
that Turing machines can be written for any computational process, this would imply
that all such processes could be carried out!

The fly in the ointment is that a Turing machine may not always halt. A Turing
machine is said to halt if either it moves into an accepting state, or if there is no action
associated with the current state and input symbol.

In fact Turing himself proved that it is not possible to decide which Turing machines
halt. There is no algorithm (or machine) which when given any Turing machine will always
be able to compute whether or not the Turing machine halts on all its inputs.

Of course, there are many Turing machines for which we can show the machine always
halts on all its inputs, and there are some Turing machines which we can show never halt
on certain inputs. But there is no algorithm which can decide the result for all machines
and all inputs.

There are many other definitions of machines which are similar to Turing machines
and which seem, at first sight, to be more general. For example, we can allow the tape
to be infinite in both directions. Also we can allow more than one choice of action to be
associated with a given state and input symbol (a non-deterministic Turing machine).

It is a remarkable fact, and one which significantly supports Church’s Thesis, that all
the extensions of Turing machines which have been proposed turn out to the equivalent to
the original definition. In other words, for any formal machine that has ever been proposed
there is an equivalent Turing machine.

9.3.2 Non-computability

The sets which are languages defined by Turing machines are called the recursively enu-
merable sets.

The point about recursively enumerable sets is that there is an algorithm which lists
all the elements in the set. Thus if a set L is recursively enumerable (r.e.) and we want
to know if x ∈ L we set the algorithm going and in finite time the element x will appear
on the list of outputs.

This does not mean, however, that we can decide whether or not x ∈ L. If x ∈ L then
it will eventually appear on the list. But if x 6∈ L we can’t know this. The fact that it has
not appeared on the list so far does not mean that it will not appear later.

However, if both the set L and its complement are r.e. then we can decide for any
given x whether x ∈ L. This is because we can set both algorithms, the one which lists L
and the one which lists its complement, going and in finite time the element x will appear
on one list or the other.

Sets L which are r.e. and whose complement is also r.e. are called recursive sets. It is
the case that the recursive sets are precisely the languages of the Turing machines which
always eventually halt on all inputs.

Recall the Chomsky hierarchy described above. The most general class of languages in
the hierarchy is the phrase structure class, and it is a theorem that the phrase structure
languages are precisely the r.e. sets.

The question arises as to whether all sets can be defined by Turing machines. In other
words are all sets r.e. If this is not true then, by Church’s Thesis, there exist sets whose
elements cannot be computed!

The proof that there exist sets which are not r.e. is the same as the proof that the real
numbers are not countable. We use a diagonalisation argument.
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First we note that since every Turing machine has a finite set of states and a finite set
of tape symbols, and thus there are only finitely many functions f on S ×∆, we can form
a (infinite) list of all the possible Turing machines:

T1, T2, T3, . . .

Consider all the functions f : N → N. Let us suppose that the sub-list of Turing
machines which calculate integer functions is

Ti1 , Ti2 , Ti3 , . . .

Now define a function g : N→ N as follows:
If, for the integer function fim calculated by Tim , we have fim(m) = 0 then let g(m) = 1,

otherwise let g(m) = 0.
Then we have that g 6= fik for any value of k, thus g cannot be calculated by any

Turing machine.
Put informally, there are only countably many Turing machines, but there are un-

countably many integer functions, so there are too many functions for them all to be
computable.

For a function f : N → N define the set Xf = {(n, f(n)) | n ∈ N}. If f is a function
which cannot be computed using a Turing machine then Xf cannot be the language of a
Turing machine, i.e. Xf is not r.e.

9.4 Look up on the WEB

Alan Turing Born in London in 1912, Turing studied mathematics at Cambridge.
During the second World War Turing worked on code breaking at Bletchley Park. He
wrote many papers on mathematics, logic and computability, but perhaps he is best known
in the academic world for his paper on the Entscheidungsproblem in which he proves the
undecidability of the halting problem.

Alonzo Church Born in the USA in 1903, in addition to formulating Church’s Thesis,
Church invented the Lambda Calculus, a logical formalism which is important in the study
of the semantics of programming languages. Turing was a student of Church’s in Princeton
for a while, and so was Kleene.

Don Knuth Born in 1938 in America, Knuth started publishing papers while he was
still an undergraduate. In addition to his fundamental contribution to parsing theory,
Knuth create the TeX type setting system which completely revolutionised mathematical
and scientific publishing.

Noam Chomsky Born in America in 1928, Chomsky worked for most of his career
at MIT in Boston. He wrote many papers in linguistics and in politics and philosophy.
Chomsky is one of the most frequently cited authors who is still alive.


