
Compilers And Code Generation

Elizabeth Scott

CS3470

Department of Computer Science
Egham, Surrey TW20 0EX, England

Abstract

These lecture notes accompany the course CS3470 Compilers And Code Gen-
eration. They contain the basic material covered in that course.

This document is c©Elizabeth Scott and Adrian Johnstone 1998, 2008,
2011, 2013.

Permission is given to freely distribute this document electronically and
on paper. You may not change this document or incorporate parts of it
in other documents: it must be distributed intact.

Please send errata to the authors at the address on the title page or
electronically to E.Scott@rhul.ac.uk.

CONTENTS i

Contents

1 Languages and translation 1
1.1 High level and low level languages 1
1.2 Course organisation 1
1.3 Related topics and transferable skills 2
1.4 Translation 3
1.5 Vocabulary 3
1.6 Semantics 4
1.7 Grammar 4
1.8 Course outline 7
1.9 Professional issues 7

2 Stages of compilation 11
2.1 Interpreters 11
2.2 Portability 11
2.3 Automated front end production 12
2.4 Back end design 12
2.5 How a computer translates 12

2.5.1 Source buffering and error reporting 14
2.5.2 Lexical analyser 14
2.5.3 Syntax analysis – parsing 14
2.5.4 Semantic analyser 14
2.5.5 Intermediate code generator 14
2.5.6 Code improver 15
2.5.7 Code generator 15

2.6 Loading and linking 15
2.7 Passes and relations between the phases 16
2.8 Input preprocessing – buffers 16
2.9 More on input buffering 18

3 Lexical Analysis 19
3.1 Tokens 19
3.2 Regular Expressions 20
3.3 Tokens and regular expressions 21
3.4 Finite state automata and lexical analysis 22
3.5 Thompson’s construction 24
3.6 CS1870 material 25
3.7 The subset construction 26
3.8 Minimising a DFA 29
3.9 A lexical analysis algorithm using a DFA 30
3.10 A lexer for the whole language 30
3.11 Lex 31
3.12 Symbol tables 35
3.13 Hash tables 37

CONTENTS ii

4 Syntax analysis I – top down parsers 39
4.1 Parsing techniques and efficiency 39
4.2 Grammars and languages 40
4.3 Exercises 41
4.4 Derivation trees 42
4.5 Top down parsing 45

4.5.1 Left-most top down parsing 46
4.5.2 first sets 46
4.5.3 Calculating first sets by hand 47

4.6 Grammars which admit top down LL(1) parsers 48
4.6.1 Left recursion 48
4.6.2 Left recursion removal algorithm 49
4.6.3 Left factored grammars 50
4.6.4 Follow determinism 50
4.6.5 LL(1) grammars 51

4.7 Top down LL parsing and recursive descent 51
4.8 EBNF 53
4.9 rdp 56

4.9.1 Acceptable languages 56
4.9.2 System flow 57
4.9.3 An example – the mini language 57
4.9.4 Building a mini parser 60

4.10 Strategies For Dealing With Ambiguity 60

5 Syntax analysis II – bottom-up parsers 62
5.1 State machines for finding derivations 62
5.2 Using the state machine to parse 65
5.3 DFAs and LR(0) parse tables 65

5.3.1 DFAs from grammars via the subset construction 65
5.3.2 Algorithm to directly construct an LR(0) DFA 66
5.3.3 Parsing with a DFA 66
5.3.4 LR(0) grammars 67

5.4 Stack based implementation 67
5.5 SLR(1) parse tables 69

5.5.1 A non-LR(0) grammar 69
5.5.2 Algorithm to construct an SLR(1) parse table 70
5.5.3 SLR(1) grammars 70
5.5.4 Stack based SLR parsing 71

5.6 LR(1) and LALR parse tables 72
5.7 YACC 73
5.8 Ambiguity in LR parses 75
5.9 Why have a scanner? 76

6 Syntax analysis III – GLL parsers 77
6.1 Introduction to GLL 77
6.2 Using explicit call stacks 78
6.3 Non-LL(1) grammars - using elementary descriptors 81

CONTENTS iii

6.4 The GSS and the set P 85
6.5 Example - a GLL parser 87
6.6 Formal templates for generating GLL parsers 89

7 Semantic evaluation 92
7.1 Tokens and attributes 92
7.2 Annotated parse trees 92
7.3 Syntax directed translation 94
7.4 Attribute grammars 94
7.5 Top down translation 96
7.6 Types 97
7.7 Semantic actions in rdp 98

7.7.1 Adding interpreter semantics 98
7.7.2 Symbol table manipulation 98
7.7.3 Attributes 100
7.7.4 Semantic actions 100
7.7.5 Generating and running the interpreter 101

8 Intermediate Code 103
8.1 Abstract parse trees 103
8.2 Three address code 105

8.2.1 Generating three address code 106
8.2.2 Flow of control statements 108
8.2.3 Example 1 109
8.2.4 Arrays in three address code 111
8.2.5 Example 2 111

9 Code improvement 113
9.1 Basic blocks 113
9.2 Flow Graphs 116

9.2.1 Natural loops 116
9.2.2 Code motion 117
9.2.3 Code hoisting 118
9.2.4 Loop fusion 118

9.3 Directed Acyclic Graphs (DAGS) 121
9.3.1 Constructing a DAG from code 121
9.3.2 Code improvements from DAGS 122
9.3.3 Reconstructing code for DAGs 123

10 Error detection, reporting and recovery 125
10.1 Classes of error 125
10.2 Error messages 127
10.3 Error recovery 127
10.4 Error correction 128
10.5 Stop on first error 129
10.6 Panic mode error recovery 129

CONTENTS iv

11 Target specific code generation 130
11.1 Code selection 131
11.2 Register allocation 132
11.3 The register allocation problem 132
11.4 Allocation schemes 133
11.5 Register counting 133
11.6 Programmer driven register allocation 133
11.7 Usage counts 134
11.8 Register allocation by graph colouring 134
11.9 Spilling algorithms 135
11.10Instruction scheduling and speculative execution 136

Languages and translation 1

1 Languages and translation

In this first section we shall discuss the general principles of language and trans-
lation which underpin the theory and implementation of compilers. We shall
also give an overview of the course structure, objectives, and administrative
organisation.

This section only contains a brief outline of the motivation and historical
development of compiler theory. You should read one of the texts recommended
below to fill in the details in these more sparse notes.

1.1 High level and low level languages

Broadly speaking, a high level language provides a notation that is designed to
map easily onto human design procedures and a low level language is designed
to map easily onto machine operations. A language construct that generates
many machine actions (such as a FOR loop) is called high level, and a language
construct that generates only one action (such as assignment) is called low level.

In the past, low level languages (those which contain no high level constructs
at all) were used by programmers seeking the most efficient programs, because
all aspects of the program’s execution can be explicitly specified. In a high level
language, the compiler makes some implementation decisions for us. High level
languages can still allow a degree of access to potentially dangerous machine
capabilities, such as direct manipulation of addresses.

Although a low level language presents real opportunities for program op-
timisation, they are hard to write and usually non-portable, because every
computer architecture has its own machine instructions and thus its own as-
sembly language. Thus programs are usually written in high level languages
and automatically translated into the appropriate machine language.

1.2 Course organisation

Aims:

� To develop the theory that makes it practicable to produce efficient com-
pilers.

� To describe several different methods of automatic language analysis, dis-
cussing their advantages and disadvantages.

� To explain how to design computer languages so that efficient compilers
can be written for them.

� To give insight as to why programming languages look the way they do.

Learning objectives:
By the end of this course a student should be able to

� explain the role and structure of a compiler and be able to describe the
standard stages of compilation

Languages and translation 2

� write grammars to specify simple languages, and write a lexical analyser
and parser for them

� describe and write syntax directed translators and use them to construct
intermediate code

� describe standard techniques for improving target code quality

There will usually be three lectures a week. One lecture slot will be some-
times be run as an interactive class with an associated work sheet.

There will be four assessed assignments, each worth 5% of the course mark.
This set of departmental lectures notes accompanies the lectures, and can

be found on the course website. The material in these notes will be expanded
on in class, so you will need to take your own notes to supplement the
course notes. A half unit course represents an average student workload of
9 hours a week, so you should expect to spend about six hours a week outside
lectures studying for this course (you may wish to spend longer if you find the
material particularly difficult or if you hope to get a top class degree). We
recommend that you use the notes provided as a basis for studying text books,
and trying the exercises that they contain. Recommended books for this course
are:

� Compilers: principles, techniques and tools
Alfred V. Aho, Monica S Lam, Ravi Sethi and Jeffrey D. Ullman, Addison-
Wesley, 2007.

� The theory and practice of compiler writing J. Tremblay and P. G. Soren-
son, McGraw Hill 1985 (dense but comprehensive).

You may also find useful help and information on the net, particularly via
the news group comp.compilers.

1.3 Related topics and transferable skills

1.3.1 Bringing together earlier topics

This course applies many of the ideas covered in the first year Machine Funda-
mentals course, particularly automata theory and assembly programming. It
also applies the basic mathematical skills developed in the first year Mathemat-
ical Structures course.

We will also apply the knowledge you have built up of various program-
ming languages. This experience will help you to understand the purpose and
usefulness of the techniques that we will study,

1.3.2 Applying the ideas gained

This course course includes laboratory sessions using rdp, our recursive descent
parser generator.

The rdp tool uses the approaches covered in this course to generate parses
for user specified grammars. You will be able to apply your understanding of

Languages and translation 3

the LL(1) grammar conditions to write language specifications which can be
accepted by rdp.

You will also be able to add semantic rules to grammars so that a corre-
sponding rdp parser can actually translate input programs, either into assembly
language or into a directly executable C program.

1.3.3 Personal development

As well as academic knowledge, our degree programmes build transferable skills.
Throughout this course you will need to work through exercises, both following
examples presented in lectures and working on you own. This will reinforce the
general skills of

� practising in order to gain mastery of a technique

� using concrete examples to build understanding of general principles

The inclusion of lab sessions to reinforce the theoretical material develops the
skill of

� using different approaches to provide alternative methods for understand-
ing

In general, the regular assignment sheets will extend your transferable skills in

� problem solving

� personal organisation

� working to deadlines

� ability to communicate understanding and knowledge

1.4 Translation

When translating we usually begin by detecting individual words and then we
check the relationships that allows them to be grouped into phrases. Finally we
select a meaning for the phrase. Both human and computer languages exhibit
three main features:

1. vocabulary, the basic words from which phrases are constructed,

2. grammar, the rules by which words may be combined to form phrases,

3. semantics, the meaning which may be extracted from correctly formed
phrases.

1.5 Vocabulary

The vocabulary of computer languages is very small compared to that of human
languages, the bulk of most programs being made up of names that are defined
during program translation. Mathematical symbols also count as words in
programming languages, so that the following character strings all represent
discrete words to a Pascal translator:

Languages and translation 4

begin end for while +

mod := >= ; if integer

1001.3 variable name

1.6 Semantics

Of the three elements of language, the semantics of a language are the most
difficult to characterise in any formal sense. Translation essentially involves the
construction of a string in the object language which has the same meaning
(semantics) as a given string in the source language.

Natural language translation is not an easy process because of the context
sensitivity. It is not possible to translate ‘word by word’ or even to correctly
translate individual words in isolation. The French phrase un homme at un
enfant fatigué translates as a man and a tired child, but a literal word-for-word
translation yields a man and a child tired which is not acceptable English. More
interestingly, the almost identical un homme at un enfant fatigués means a tired
man and a tired child even though the word for word translation would be as
above.

Furthermore, if we only see part of a sentence we may not be able to tell
what all the words mean. For example the phrase ‘... giant waves down the
tunnel’ is part of the following two sentences.

The giant waves down the tunnel to the child waiting at the other end.
The rushing water came in giant waves down the tunnel.
The meaning of the word ‘waves’ is different in each case, and can only be

established by examining the surrounding context. In order to allow efficient
compilation techniques we usually require that computer languages do not have
context sensitivities.

1.7 Grammar

The problem of the limitation of word-for-word substitution holds for computer
languages as well as for natural languages. A simple example is the structure of
primitive data declarations in Pascal and C. In C, a declaration is introduced
by a type name and followed by a comma-delimited list of new names, one per
new variable:

int a,b,c;

In Pascal, a block of variable declarations is introduced by the keyword VAR

followed by a comma delimited list of new names, followed by a colon (:) and
the name of the variable type.

VAR a,b,c: integer;

If we wanted to write a translator from Pascal to C then we would need
to read the entire data declaration phrase and reorder it before emitting the
Pascal equivalent. Most Unix systems come with a program p2c which per-
forms exactly this task – it translates correct Pascal programs to equivalent C
programs. Figures 1 and 2 show an example of this process.

Languages and translation 5

{ Pascal source code }

procedure lookup(var name : str255; var np : nodeptr);

var

npp : ^nodeptr;

begin

if strlen(name) > maxnamelen then

setstrlen(name, maxnamelen);

npp := addr(base);

while (npp^ <> nil) and (npp^^.name <> name) do

begin

if name < npp^^.name then

npp := addr(npp^^.left)

else

npp := addr(npp^^.right);

end;

end;

Figure 1 p2c example Pascal source code

/* C output code */

Static Void lookup(name, np)

Char *name;

node **np;

{

node **npp;

if (strlen(name) > maxnamelen)

name[maxnamelen] = ’\0’;

npp = &base;

while (*npp != NULL && strcmp((*npp)->name, name)) {

if (strcmp(name, (*npp)->name) < 0)

npp = &(*npp)->left;

else

npp = &(*npp)->right;

}

}

Figure 2 p2c resulting C code

Languages and translation 6

I ate

article noun

and I drank

object objectsubject verb subject verb

�

J
J
Ĵ

main clause

�

��
�����

Q
Q
Q
QQs

main clause

�

��
�����

Q
Q
Q
QQs

conjunction

sentence
���������)

PPPPPPPPPq?

the toast
? ?? ? ? ??

article noun

�

J
J
Ĵ

the toast
? ?

Figure 3 The structure of an English sentence

We use grammar rules to define the correct structure of a particular lan-
guage construct. When learning human languages, grammar rules are usually
presented rather informally, for example

‘Though nouns of multitude may be freely used with either a sin-
gular or a plural verb, or be referred to by pronouns of singular or
plural meaning, they should not have both (except for special rea-
sons and upon deliberation) in the same sentence; and words that
will rank in one context as nouns of multitude may be very awkward
if so used in another’.

This rather confusing paragraph attempts to catch detailed nuances of
meaning. At a coarser level of analysis, tree diagrams are very useful in es-
tablishing the relationship between the grammatical elements. Figure 3 shows
a five level hierarchy that demonstrates the structure of two clauses and their
constituent parts. Exactly the same kind of diagram can be drawn to show the
relationship between the elements of a Pascal program fragment.

Tree diagrams for complete computer languages are extremely unwieldy. A
generative grammar is a notation for expressing the relationships in the tree
diagram in a textual fashion. The notation we use is the Backus-Naur Form
(BNF) originally developed in order to define the syntax of Algol-58 and based
on the ideas of Noam Chomsky who in the 1950’s revolutionised the linguist’s
approach to grammatical analysis.

The theoretical study of language translation has led to the design of com-
puter languages which can be translated in a reasonably straight-forward way
– in fact, by a computer. This is a real success story of CS as a science. An
‘experiment’ was performed (a language and compiler were written by hand),
then the results were analysed leading to theoretical understanding of the prob-

Languages and translation 7

lems in compilation, and then this theory was fed back into language design in
order to make compiler writing easier.

The first part of this course will develop the language theory which under-
pins automatic translation. In order to discuss the theory of language transla-
tion we need to have a formal definition of a language. You have studied formal
definitions regular of languages in CS1870. We shall build on the ideas devel-
oped in that course. You will probably need to remind yourself of the CS1870
material. You can also find everything you need in the Aho, Lam, Sethi and
Ullman book which is recommended for this course. In Section 4.3 there is a
set of exercises which you are strongly encouraged to complete.

1.8 Course outline

1. Language and translation

2. Stages of compilation

3. Lexical analysis and symbol tables

4. Recursive descent parsers

5. Table based parsers

6. General parsers

7. Semantic attributes and intermediate code

8. Control and data flow analysis

9. Code improvement for sequential processors

1.9 Professional issues

As computer science professionals we must act according to the ethical codes of
the profession. Both the ACM/IEEE and the BCS have codes of conduct and
good practice. In this section we shall highlight aspects professional conduct
that relate particularly to the design and use of compilers and translators.

The ACM’s Code of Ethics and Professional practice has a short form,
reproduced below, and a full form that you should read on their website,
www.acm.org/about/se-code.

ACM/IEEE Code of Ethics Short Form
Software engineers shall commit themselves to making the analysis, specifica-
tion, design, development, testing and maintenance of software a beneficial and
respected profession. In accordance with their commitment to the health, safety
and welfare of the public, software engineers shall adhere to the following Eight
Principles:

1. PUBLIC - Software engineers shall act consistently with the public interest.
2. CLIENT AND EMPLOYER - Software engineers shall act in a manner that
is in the best interests of their client and employer consistent with the public

Languages and translation 8

interest.
3. PRODUCT - Software engineers shall ensure that their products and related
modifications meet the highest professional standards possible.
4. JUDGMENT - Software engineers shall maintain integrity and independence
in their professional judgment.
5. MANAGEMENT - Software engineering managers and leaders shall sub-
scribe to and promote an ethical approach to the management of software de-
velopment and maintenance.
6. PROFESSION - Software engineers shall advance the integrity and reputa-
tion of the profession consistent with the public interest.
7. COLLEAGUES - Software engineers shall be fair to and supportive of their
colleagues.
8. SELF - Software engineers shall participate in lifelong learning regarding
the practice of their profession and shall promote an ethical approach to the
practice of the profession.

There is a BCS Code of Conduct, which can be found on their website:
//www.bcs.org/category/6030.

In Section 2(b) is listed the need to maintain your professional knowledge,
skills and competence, maintaining awareness of technological developments,
procedures, and standards that are relevant to your field.

The strong foundational knowledge that is obtained from an academic com-
puter science degree forms a basis for this and for items 3,4 and 8 of the ACM
Code above.

Annex A, Interpretation of the BCS Code of Conduct, of the BCS code
gives the following details which emphasise the need for technical competence.
This is also reflected in Principles 3 and 8 of the ACM

BCS: Professional Competence and Integrity

• All members are required to undertake professional development activities
as a condition of membership. Continuing professional development activities
should broaden your knowledge of the IT profession and maintain your compe-
tence in your area of specialism.

• You should seek out and observe good practice exemplified by rules, standards,
conventions or protocols that are relevant in your area of specialism.

• You should only claim current competence where you can demonstrate you
have the required expertise e.g. through recognised competencies, qualifications
or experience.

ACM Principle 3: PRODUCT
Software engineers shall, as appropriate:
3.01. Strive for high quality, acceptable cost and a reasonable schedule, en-
suring significant tradeoffs are clear to and accepted by the employer and the
client, and are available for consideration by the user and the public.
3.02. Ensure proper and achievable goals and objectives for any project on
which they work or propose.
3.03. Identify, define and address ethical, economic, cultural, legal and environ-

Languages and translation 9

mental issues related to work projects.
3.04. Ensure that they are qualified for any project on which they work or
propose to work by an appropriate combination of education and training, and
experience.
3.05. Ensure an appropriate method is used for any project on which they work
or propose to work.
3.06. Work to follow professional standards, when available, that are most ap-
propriate for the task at hand, departing from these only when ethically or
technically justified.
3.07. Strive to fully understand the specifications for software on which they
work.
3.08. Ensure that specifications for software on which they work have been well
documented, satisfy the users requirements and have the appropriate approvals.

ACM Principle 8: SELF
Software engineers shall continually endeavor to:
8.01. Further their knowledge of developments in the analysis, specification, de-
sign, development, maintenance and testing of software and related documents,
together with the management of the development process.
8.02. Improve their ability to create safe, reliable, and useful quality software
at reasonable cost and within a reasonable time.

A substantial component of the cost of a software engineering project is the
time taken for software development. As is made explicit in ACM Principle
3.01 and 8.02, it is the professional responsibility of a software developer to use
methods which allow the time taken to be minimised and their software to be
correct and efficient.

Throughout the 1950s compilers were considered to be difficult to write.
The first Fortran compiler took 18 staff years to implement. In the area of
language translation there has been particular theoretical success, the study
of systematic ways of describing the structures and meanings of computer lan-
guages has resulted in a theoretical base which allows a competent programmer
to produce a compiler for a complex language in only a few weeks. It is also
the case that the knowledge of this theory has had a great influence on the
‘shape’ of modern computer languages; they are designed to allow the applica-
tion of standard compiler-generation techniques. This accounts for many of the
differences between languages such as COBOL and Java.

If the theory that has been developed is not part of a software writer’s
armoury then they are likely to design languages for which translators are ex-
pensive to construct and maintain. Since almost all forms of interface with a
computer require, often multiple levels of, translation the impact of this could
be substantial.

The material covered in this course will underpin high standards of computer
language and compiler design. It will also provide principles against which
designs for new languages can be assessed for ease of implementation.

It is the responsibility of all software builders to produce correct code, and

Languages and translation 10

it is particularly important that a compiler is correct since it generates the pro-
gram that is actually executed. Automatically generated programs are more
likely to be error free as the generator program is used frequently and as long
as it is correct the programs it generates will be correct. The emphasis in this
course is not ‘can you do it’ but ‘can you write a program to do it’. Thus
automatic compiler generation is desirable not only for efficiency but also for
correctness. This means that it is necessary to master the systematic approach
and detailed methods presented in this course, rather than producing ad hoc
solutions. These methods form the basis of compiler-compilers, programs which
generate compilers. In particular, we will study methods to automatically gen-
erate lexical analysers from sets of regular expression, and parsers from classes
of context free grammars.

The material in this course forms part of your professional armoury.

Stages of compilation 11

2 Stages of compilation

Computer language translation is traditionally viewed as a process with two
main parts: the front end conversion of a high level language text into an
intermediate form, and the back end conversion of the intermediate form into
the native language of a computer. This approach is useful because it turns out
that the challenges encountered in the design of a front end differ fundamentally
from the problems posed by back end code generation and separating out the
problems makes it easier to think about the overall task.

A pure translation program that converts from one language such as C
to another, such as the native machine language of your computer is called a
compiler because it compiles a list of machine-level instructions from a high
level specification that is independent of the type of computer you are using.

The language to be translated forms the input to the front end and is called
the source language. The output of the back end is called the target or object
language.

2.1 Interpreters

Sometimes the subdivision of the translation problem into front and back ends
is explicit in the translator program, but not always. An interpreter is a spe-
cial kind of language translator that executes actions as it translates. Most
operating system command shells are of this form: each command is executed
as it is encountered. In such a system there is no readily discernible back end
or intermediate form although it can still be useful to think of the program as
performing front and back end tasks. The macro languages found in most word
processors, along with simple programming languages such as BASIC are most
often implemented as interpreters.

2.2 Portability

In systems that do maintain a division between front and back ends, it is in
principle possible to use a single intermediate form with multiple front and back
ends as illustrated in Figure 4.

The intermediate form must provide enough generality to cope with the
various source and target languages. Fortunately, front end processors for dif-
ferent languages sometimes display striking similarities. For instance, at a very
crude level the variable declaration constructs in C and Pascal are quite similar.
Their use of if-then-else selection is almost identical. It is perfectly possi-
ble to design an intermediate form that can cope with both C- and Pascal-like
structures.

Using this organisation, a compiler for a given language can be moved to a
new computer architecture by writing a new back end to take account of the
differing instruction sets. More rarely, a new programming language syntax
can be quickly implemented on a given architecture by building a new front
end and using an existing back end. This saving in engineering effort can be
very important in commercial compiler systems, even though it may require

Stages of compilation 12

Intermediate form

VAX code

80x86 code

RISC code

C front end

Pascal front end

-

H
HHHj

���
�:

�
�
�
�
��3

Q
Q
Q
Q
QQs

Figure 4 Multiple front and back ends

an intermediate form that is more complex than that required for a single
source/target language pair.

2.3 Automated front end production

Many of the theoretical issues surrounding front end translation were solved
during the 1960’s and 1970’s, and it is possible to reduce most of the imple-
mentation effort for a new front end to a clerical exercise that may itself be
turned into a computer program. Compiler-compilers are programs that take
the description of a programming language usually written in some variant of
BNF, and output the source code of a program that will recognise, and possibly
act upon, phrases written in that language.

2.4 Back end design

Code generation, the primary task of the back end, is much less well understood
than front end translation. The basic task is the selection of machine code
sequences that correctly represent the meaning of the source language phrases.
In general we will want to generate code which executes either as quickly as
possible, or requires as little space as possible, or both (these two aims may or
may not conflict).

2.5 How a computer translates

We have already seen in section 2.1 that translators may be conveniently de-
scribed in terms of a front end, an intermediate form and a back end. In more
detail, many (although not all) compilers display the structure shown in Fig-
ure 5. Each of the seven boxes represents a compiler phase, and might be
thought of as an independent program module, with modules passing informa-
tion along in pipeline fashion.

Stages of compilation 13

Source code

Source buffering and error reporting

Lexical analyzer or scanner

Phrase level or syntax parser

Context sensitive semantic analyser

Intermediate code generator

Code improver or optimiser

Code generator

Object code

?

?

?

?

?

?

?

?

Figure 5 The traditional compiler phases

Stages of compilation 14

2.5.1 Source buffering and error reporting

For efficiency an entire line of source code is read from disk, and character by
character analysis proceeds in memory. This module usually also handles the
generation of source code listings, and the insertion of error messages.

2.5.2 Lexical analyser

The lexical analyser breaks the input stream of characters up into a series of lan-
guage tokens. In a computer language, the ‘words’ might include punctuation
symbols as well as keywords.

Since the vocabulary of programming languages is so small, it is convenient
to allocate a small integer to each keyword and use this numeric label in later
stages of processing rather than the full text string. The output of the lex-
ical analyser, then, is a stream of integers representing the stream of tokens
recognised within the stream of characters coming from the source buffer.

The lexical analyser also discards formatting information, such as whites-
pace, newlines and comments, that is used purely to help human understanding
of the source program.

2.5.3 Syntax analysis – parsing

A parser is a program that checks that a string conforms to the grammar rules
for a language. The grammar rules are usually represented by BNF productions,
and often a parser generator is used to automate the essentially clerical process
of constructing a parser for a given set of productions.

We are interested mainly in translations that can occur in near linear time,
so that translation time is proportional to the number of words in the text that
is to be translated. To make this possible, programming languages are designed
to be unambiguous and in fact the meaning of most computer language phrases
is not only clear in isolation, but may be built up in a single left to right scan
of the program text.

It is not straightforward to discover if a particular set of grammar produc-
tions may be parsed in linear time, not least because there are several known
linear-time parsing algorithms, each of which imposes different constraints on
the kind of grammar productions that may be written.

2.5.4 Semantic analyser

At this stage, using the structure determined in the syntactical analysis, the
meaning of the input is determined. To describe meaning we give it in a lan-
guage that we already understand. i.e. German to English to French. For
compilers this is often done by producing ‘intermediate code’.

2.5.5 Intermediate code generator

There are several popular types of intermediate form, including the use of
a pseudo-assembly language for an idealised machine or the construction of

Stages of compilation 15

derivation trees which are effectively a map of the grammar productions recog-
nised by the parser. A good intermediate form will be able to encode the
concepts used in several different languages.

2.5.6 Code improver

It is not uncommon for programmers to write code that contains redundancies
such as the following pair of array accesses.

a[i*j] = p;

b[i*j] = q;

A more efficient version of the same program fragment is:

temp = i*j;

a[temp] = p;

b[temp] = q;

Here, the indexing expression has been pre-calculated, saving one multiplica-
tion.

It is possible to write a program that traverses the intermediate form and au-
tomatically rearranges the original code in this way, a process known as common
sub-expression elimination. In fact this is only one of a family of techniques
that has been developed to improve user code by reordering and sometimes
completely replacing the users instructions with equivalent code that is faster
(or smaller) whilst preserving program semantics. Traditionally compilers em-
ploying these techniques are called ‘optimising’ compilers which is perhaps a
misnomer since in general the truly optimal code sequence is not produced. We
prefer to use the term ‘code improvement’ to ‘code optimisation’.

2.5.7 Code generator

Code generators traverse the intermediate form and output actual fragments of
the target language which implement the specified semantics. Code generators
are sometimes based on pattern matchers, that look for particular configurations
in the intermediate form and check them against a list of stored code templates.
Perhaps the most important sub-function of the code generator is to perform
register allocation in which the most frequently used variables are assigned to
machine registers as opposed to being held in the slower main memory.

The output of the code generator may be source for an assembler, or the
equivalent binary object code. Some compilers have an option to produce as-
sembly language even though, for efficiency reasons, they usually output binary
directly, and these assembler listings can make very instructive reading.

2.6 Loading and linking

A typical compiler will not actually produce final machine instructions in spe-
cific places in the memory of the target machine. Compilers usually produce a
list of machine instructions, in the order in which they are to be executed, but

Stages of compilation 16

with relocatable addresses. Some of the binary words are distinguished and
the value of the starting address of the code must eventually be added.

As a compiler will normally produce relocatable code, there has to be an
associated program called a loader whose job it is to actually place the target
code in to memory, and alter the values of the relocatable addresses. It also
has to place the data in the proper locations in memory. The loader produces
the final executable target code.

The loader usually also performs link-editing – the adding together of
several compiled programs to form one program in which all the addresses are
properly synchronized. This may well involve calls to a library and the selection
of the particular routines from that library that are required by the program.

2.7 Passes and relations between the phases

There are many ways in which a compiler can read a source program, and
these will depend to some extent on the nature of the source language. For
example, if the language allows the use of identifiers before their values have
been given then the compiler may actually scan the source code twice, the first
time constructing a table which contains the values of the identifiers when they
eventually appear and then a second time to actually interpret the code. This
is often referred to as a ‘two-pass’ compiler. It is possible, of course, to do the
compiling in one pass by having some way of temporarily translating undefined
identifiers, or leaving ‘holes’ in which they will later be inserted, and going
back and substituting the actual value once it is discovered. This is sometimes
referred to as backpatching.

Compiling is often done in several passes, during each pass the compiler
reads the input file and produces an output file. This can be done in many
different ways. It is possible, for example, to have the lexical, syntactic, and
semantic analysis all done in one pass with the syntax analyser acting as ‘man-
ager’. In this case, when the syntax analyser requires the next token it calls up
the lexical analyser to find it. When it has recognized an expression the syntax
analyser then calls a routine to perform the semantic analysis and produce the
intermediate code. Thus on a single pass a program in the intermediate code
has been produced. The next pass then takes this as input.

Clearly there is also a balance to be met when deciding how many passes
are desirable. On the one hand passes are time consuming because they require
reading and writing of input and output files, but on the other hand reducing
the number of passes usually increases the amount of the program that must
be held in memory at any one time.

2.8 Input preprocessing – buffers

The need for careful use of buffers for inputting data to the lexical analyser
arises because of the need for lookahead. It may be necessary to read sev-
eral characters of a keyword, or even beyond the keyword, before it can be
recognized.

Stages of compilation 17

For example, in C++ most keywords can be distinguished by looking ahead
at just one or two characters. The + sign can be recognized as soon as it is
read, whilst if the first character read is < it is only necessary to look ahead
one more character to decide whether this is the less-than symbol or, if it is
followed by say =, that it is the less-than-or-equal symbol. For reading numbers
we need to look further ahead since we don’t know until we reach the decimal
point that 1234543.78 is a float rather than an integer.

The most obvious input method is to have the lexical analyser read in char-
acters one at a time until the input string matches a keyword. However, we may
need to look ahead beyond the keyword before it can be recognized, so extra
characters have to be read and then pushed back into the input stream once a
keyword is recognized. These characters then have to be read again when it is
their turn to be identified. The problem with this is that reading characters in
from input is very time consuming, and the same character may end up being
read several times during one input. We use teo pointers, one of which points
to the beginning of the current word and the other moves forward until the
whole word is read.

The problem then is: what happens when the forward pointer moves passed
the end of the buffer? A common technique to deal with this is a two-buffer
input scheme. In such a scheme the buffer is thought of as being divided into
two equally sized halves, and there are two pointers to the buffer. Initially both
pointers point at the beginning of the buffer. One, the forward pointer, moves
forward character by character along the buffer until keyword matches the string
between the two buffers. Once this match is made the forward pointer is placed
at the end of the string and between the two pointers we have a keyword, which
is now processed by the lexical analyser. Once this is done both pointers are
moved to the first character beyond the keyword and the process begins again.

∗ ∗ ∗ . . . ∗ ∗ . . . ∗ ∗ ∗ ∗ ∗
↑ ↑

pointer forward
pointer

When the forward pointer is about to move past the half-way point in the
buffer then the next block of input is read into the second half of the buffer
and the identifying process continues. When the forward pointer is at the end
of the buffer then the next block of input data is read into the first half of the
buffer and the forward pointer is ‘wrapped’ round to point at the beginning of
the buffer again.

∗ ∗ ∗ . . . ∗ ∗ ∗ ∗ ∗ ∗ ∗ . . . ∗ ∗ ∗
↑ ↑

read 2nd
half buffer

read 1st
half buffer

Stages of compilation 18

2.9 More on input buffering

Text buffering is a surprisingly troubling part of lexical analyser design. Sup-
porting nested include files, source echoing and synchronised error messages
requires careful design. The text buffer manager maintains a single large area
of memory. New strings can be inserted at low addresses and grow upwards.

text buffer

s1 s2 s3 s4 -

�
outer line buffer

inner line buffer

The top of the region is used as a pushdown stack of line buffers for the set
of included files. As each nested include file is opened, a record containing the
previous state of the text manager is pushed onto a linked list and a new line
buffer opened up. At the end of the included file, the buffer is released, the
record list popped and scanning continues where it left off. End of file is not
returned to the caller until the outermost file is consumed.

This arrangement allows arbitrary strings of arbitrary lengths to be stored,
and files with arbitrarily long lines to be read. As each new line is read in,
it is stored backwards at the top of the buffer. The lexer does not run out of
memory until the strings meet the line buffers, so memory can always be fully
used.

Lexical Analysis 19

3 Lexical Analysis

Just as in natural languages, computer languages are composed of words which
can be combined in certain ways to form sentences (program fragments). From a
compiler’s point of view, these sentences are strings and the strings are specified
by a formal grammar. The grammar has terminals and non-terminals, and the
strings are sequences of terminals that can be derived from the start symbol.

The terminals of the grammar are essentially the keywords, identifiers and
literals of the programming language. The program that the compiler is to
translate is composed of characters which can be entered from a keyboard –
letters, digits, spaces, carriage returns, punctuation symbols etc. These symbols
need to be converted into keywords/terminals before the compiler can check
whether the input program is syntactically correct.

Grouping the input characters into terminals is usually done by a lexical
analyser. At the lexical analysis stage, the terminals are usually called tokens.
It is not sensible to have a separate token for all of the words; we don’t want
each identifier and each number to correspond to a different token. So a token
can correspond to several words. The words are strings of characters, the set
of strings which corresponds to a particular token is called the pattern of the
token, and a string from the pattern is called a lexeme of the token.

The lexical analyser reads in characters from the input file until it recognises
the lexeme of a token. It then stores the lexeme in the symbol table and returns
the token corresponding to the lexeme. (Although in certain cases, such as when
the lexeme is a keyword such as ‘if’ or ‘while’, there may be no need to store the
lexeme in the symbol table.) Comments and layout information are removed
from the program by the lexical analyser.

In this section we shall discuss the use of regular expressions to specify
the patterns of tokens, and the use of finite state automata to recognise the
lexemes. We give a formal method for constructing an NFA corresponding
to a particular regular expression, a procedure (the subset construction) for
converting this NFA into a DFA, and a procedure for improving the efficiency
of this DFA.

3.1 Tokens

One of the first steps in writing a lexical analyser is to decide exactly what
the tokens it recognizes are to be. This includes deciding what types of tokens
there are and what the name of each token is.

In the final implemented compiler the tokens will be represented by integers,
but we will give these integers mnemonic names, e.g. ID, IFSYM, ELSESYM, NUM,
DIGIT, etc. (These are the objects that are printed in bold type in Aho et.al.)
Associated with each token is a set of strings (lexemes). When a string which
is a lexeme is input to the lexer a corresponding token is output.

The set associated with the token IFSYM has only one element (the reserved
word ‘if’), so the associated set is { if }. But for some tokens the set may be
very large, the set corresponding to NUM may be {. . .− 2,−1, 0, 1, 2, 3, . . .}. For
some tokens it is not easy to describe the associated set in formal language,

Lexical Analysis 20

e.g. the set associated with ID may be the set of all finite strings starting with
a letter and followed by digits and letters, excluding strings like if that are
reserved words! How would you describe this set formally? (We shall discuss
this in the next section.)

The compiler must keep track of the actual string that was input from the
source program, not just the token to which it corresponds. If the identifier
‘sum’ is read we want to know more than just that it is an ID, we want to know
which one. In practice several pieces of information may be stored, and these
are called the attributes of the token. For example, the lexeme of the token
will be kept if it cannot be deduced from the token alone, the line number on
which the token was first met is also often kept for error reporting purposes,
and the token may have, or later be assigned, a value in which case this is also
stored.

3.2 Regular Expressions

An alphabet is any set of symbols. A string in the alphabet A is any sequence
of elements of A. For two strings α and β in A we write αβ for the concatenation
of α and β, the string obtained by writing the elements of β after the elements
of α. We let ε denote the empty string and A∗ denote the set of all strings,
including ε in A; A∗ is the Kleene closure of A.

For all α in A∗ we have αε = α = εα. Of course, we will use the usual
abbreviations like a3 for aaa etc.

For sets A and B we write

AB = {ab | a ∈ A, b ∈ B}, A+ = A∗\{ε} and A3 = {a1a2a3 | ai ∈ A}.

So AB is the set of all strings of length 2 which have one element of A followed
by one element of B, A+ is the set of all non-empty strings in A, and A3 is the
set of all strings in A of length 3. We also get that B(A ∪ (B2))∗ is the set of
all strings that begin with an element of B and is then followed by a (possibly
empty) string of elements of A and pairs of elements of B.

Given an alphabet, A, we then define regular expressions over A.

1. The element ε is a regular expression which denotes the set containing
just the empty string ε.

2. For a ∈ A, a is a regular expression which denotes the one element set
{a}.

If r and s are regular expressions then:

3. rs is a regular expression which denotes the set of strings which are
formed by concatenating a string from r with a string from s.

4. r∗ is regular expression which denotes the set of strings which are se-
quences of zero or more strings from r concatenated together.

5. r|s is a regular expression which denotes the union of the sets r and s,
the set of strings which are either a string from r or a string from s.

Lexical Analysis 21

Thus a|b = {a, b}, (ab)∗ = {ε, ab, abab, ababab, . . .}, ab∗ = {a, ab, abb, . . .}
and (ba|c)∗d is the set of strings end with d and have some c’s and ba’s in front,
eg cbaccbad ∈ (ba|c)∗d but babcd, bac /∈ (ba|c)∗d. The | operator has lowest
priority and ∗ has highest, so r | t s∗ = r | (t (s∗)).

We should also recall that there may be many ways of denoting the same
regular expression. For example, a|a and a both denote {a} and a(b|c) and
ab|ac both denote {ab, ac}.

We call the set of strings denoted by the regular expression r the language
denoted by r. Two regular expressions, r and s, are said to be equivalent if
they denote the same language. In this case we write r = s.

r|s = s|r, r|(s|t) = (r|s)|t, r(s|t) = rs|rt, r|ε = r, etc.

3.3 Tokens and regular expressions

For a computing language the alphabet usually contains digits 0, 1, ... , 9;
letters A, B, ... , Z, a, . . . , z; parentheses (,); and other symbols =, +, -, %, $,
@, !, etc.

It is (essentially) possible to define the language of each token using a context
free grammar, and to use the same techniques for lexical analysis as we shall
use later for syntax analysis. For various reasons which include efficiency, ease
of error reporting, the hiding of non-LL(1) or non-LALR(1) details and free
format normalisation, it is most common to use regular expressions to define
tokens.

For notational purposes it is useful to extend our constructs to include these
shorthands:

1. r+ (positive closure, or one-or-many occurrences) is a regular expression
denoting r r∗.

2. r? (zero-or-one occurrences) is a regular expression denoting r ∪ {ε}.

3. [abc] (character class) is a regular expression denoting {a, b, c}.

4. [a− d] (character class range) is a regular expression denoting {a, b, c, d}.

5. [¬a−c] (character class range) is a regular expression denoting L\{a, b, c}.

We often give names to regular expressions. For example,

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

is a regular expression that denotes the language {0, 1, . . . , 9}. We often call
this expression digit. We write the rule

digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9.

This is read as saying ‘digit is the name of the regular expression 0 | 1 | . . . | 9’.
A regular definition over a language L is a set of rules

d1 → r1
d2 → r2

Lexical Analysis 22

d3 → r3
...

dn → rn

where the di are (distinct) names for regular expressions over L and the ri are
regular expressions over L ∪ {di+1, . . . , dn}.

For example, if L is the set of all digits and upper and lower case letters, so

L = {0, 1, . . . , 9, A,B, . . . , Z, a, b, . . . , z},

then ID, the set of all identifiers in C, can be described as a regular expression
over L. We have the following regular definition for ID:

id → letter(letter | digit)∗
letter → A | B | . . . | Z | a | b | . . . | z
digit → 0 | 1 | . . . | 9

3.4 Finite state automata and lexical analysis

It is possible, and instructive, to give graphical interpretations of regular ex-
pressions.

A finite state automaton (NFA) (also called a transition diagram)
is a directed graph. The nodes of the graph are called states and the nodes
are connected by arrows (transitions) that are labelled with letters from an
alphabet. One state is identified as the start state, and certain others are
nominated as accepting states. A string is said to be identified by an NFA if
by starting at the start state and moving along arrows labelled by the characters
in the string we end up at an accepting state.

For example, in the following NFA the accepting states are denoted by
double circles, and the NFA accepts the string caabcb but not the strings caabc
or cab:

���1 ��� �������2 3- :
9�

start

c
a, b a, c

b

This method can do more than just recognize elements. It can report that
the string caabc was not of the required form, and it can also say that it was
expecting a b to be input, because this is the only input that causes transition
out of state 3.

We say that r is the regular expression represented by the NFA if the
strings accepted by the diagram are exactly the strings in the language denoted
by r.

The above NFA represents the expression c∗(a|b)((a|c)b)∗.

The following NFA accepts exactly those strings in the language of the
regular expression ID defined in the previous section.

Lexical Analysis 23

���1 �������2-
�

start

digit
letter y letter

We can express the action of an NFA using a transition table. This is a
table that has a row for each state of the NFA and a column for each possible
input symbol. The entries in the table are the states that can be reached
from the given state by inputting the specified symbol. (If there is no such
state then then symbol – is entered.) Note, sometimes, for example during
dead state minisation, transition tables are written the other way round, i.e.
transposed, shown on the right below.

The transition table for the first NFA above is:

a b c
1 2 2 1
2 3 – 3
3 – 2 –

1 2 3
a 2 3 –
b 2 – 2
c 1 3 –

A deterministic finite-state automaton or DFA is a finite-state au-
tomaton for which, for each state and input symbol there is at most one state
into which the machine can go.

We allow arrows to be labelled by the empty string, this means that the
machine can move from one state to the next via an empty arrow without
requiring any input. A DFA cannot have transitions labelled ε.

When an NFA gets input that results in two or more possible choices of
action effectively the machine replicates itself and produces one machine for each
possible action. Each of these machines run in parallel, reproducing themselves
further if more choices are reached. We describe this as the original machine
going into several states in parallel. The machine accepts the input string if
any of the parallel replications ends up in an accepting state. Thus, the entries
in the translation table for an NFA are sets of states.

Two finite-state automata are equivalent if they correspond to the same
regular expression.

Formally an NFA consists of a set, S, of states; a set, L, of input symbols
together with the special symbol ε; a function, move, that maps a pair of the
form (state, symbol) to a set of states; a specified start state s0; a specified
subset, N , of states called accepting states.

The lexical analysers that we are going to describe use DFAs as the mech-
anism for recognising token lexemes. A significant consequence of the theory
underlying compiler generation is that it is possible to write a program which,
given an appropriate specification of a language, will automatically generate
a compiler for the language. Such a ‘compiler-compiler’ will include a lexical
analyser generator which will have to generate a DFA from a given regular ex-
pression. Thus we need an automatic method of generating DFAs from regular
expressions – one which can be programmed.

We shall now describe such a method which first constructs an NFA using
Thompson’s construction, then generates an equivalent DFA using the subset
construction, and finally attempts to generate a more efficient DFA.

Lexical Analysis 24

3.5 Thompson’s construction

As we have already said, it is important to have a mechanical method of con-
structing an NFA corresponding to a given regular expression; a method which
will always work and does not require any ‘intuition’. We use the inductive
definition of a regular expression to automatically build a corresponding NFA.

The regular expression ε corresponds to the NFA

s0��
��

s1������
��
--start

ε

The regular expression a, where a ∈ L, corresponds to the NFA

s0��
��

s1������
��
--start

a

If p, q are regular expressions with corresponding NFAs Mp,Mq then:
pq (concatenation) is represented by

��
��

��
��

-

Mp

��
��

��
��

-

Mq

-ε

that is the two machines in series joined by an empty transition.

p | q (alternation or union) is represented by

��
��

��
��

-

Mq

��
��

��
��

-

Mp

��
��
-start

��
��

�
��*

HH
HHH

HHj

������
��

H
HHH

HHHj

�
��

�
��
�*

ε

ε

ε

ε

the two machines in parallel joined by empty transitions to a new start state
and a new final state.

p∗ (Kleene closure) is represented by

Lexical Analysis 25

��
��

��
��

-

Mp

��
��

--start ������
��
-

? ?

ε

ε

ε ε

the machine for p with new start and finish states, all joined by empty arrows.

p+ (positive closure) is represented by

��
��

��
��

-

Mp

��
��

--start ������
��
-

?

ε

ε ε

p? (optional) is represented by

��
��

��
��

-

Mp

��
��

--start ������
��
-

?

ε

ε ε

3.6 CS1870 material

The construction of a DFA from a regular expression was discussed in CS1870.
In this section part of the CS1870 notes are repeated.

It is easy to see that the following DFA, whose start state is 0, has language
{a}, the set denoted by the regular expression a.

��� ���0 1����-a

It is also easy to see that the following FAs have languages (a | b) and (a | b)∗
respectively.

Lexical Analysis 26

���

���

���

���
���

������
���

���

���

���
���

��� ���
3

5

1

2

0

10

4

6

2

3

5

7 8

����

����
b

b

a

a

�
��*

��
�*

H
HHj

HHHj

-

-

-

-

PPPq

PPPq

��
�*

��
�*

-

ε

ε

ε

ε

ε

ε

ε

ε

ε ε -=
jε

ε

These aren’t the most obvious FAs. If we just wanted the FA for (a | b) we
would probably write

��� ���0 1����a
:b
z

But the point is that the above FAs can be constructed by a formula that
applies to any regular expression. (If r and s are regular expressions for which
we already have FAs then we can generate an FA for the regular expression
(r | s) by making new start and accepting states and join these to the start
and accepting states of the FAs for r and s, see below). If there is a formula
for the construction then this can form the basis of a computer program which
automatically constructs an FA for a regular expression.

Once the computer can construct the FA we can also write a program to tra-
verse the FA with an input string and we will have a program the can recognise
the words of a programming language!

The formula for constructing an FA for a regular expression is inductive and
uses the inductive definition of regular expressions.

Example Using Thompson’s construction for the regular expression (a | b) a (b | ε)∗
we get the FA

���

���

��� ���

���

���

������

���

���

��� ���

���

���

��� ���

3

12

1

6

10

0

98

4

13

2

7

11

5

14 15����

b

ε

a

a

b

�
��*

��
�*

H
HHj

HHHj

-

-

-

-

-

PPPq

PPPq

�
��*

��
�*

-

ε

ε

ε

ε

ε

ε

ε

ε

ε ε -=
jε

ε

-

w

ε

ε

3.7 The subset construction

The automata constructed above are non-deterministic finite automata. They
can have several arcs with the same label leaving a node, and ε arcs are also
allowed. In reality a sequential computer can not cope directly with this non-
determinism.

Lexical Analysis 27

To directly simulate the behaviour of an NFA we convert it to a deterministic
finite automaton (DFA) which has no ε arcs and at most one arc with any given
label leaving a node. It might seem intuitively that an NFA should be more
‘powerful’ than a DFA, but in fact there is a DFA for every NFA.

In this section we give a general algorithm which takes an NFA and produces
an equivalent DFA (one which recognises the same set of strings).

Formally an NFA consists of a set, S, of states; a set, L, of input symbols
together with the special symbol ε; a function, move, that maps a pair of the
form (state, symbol) to a set of states; a specified start state s0; a specified
subset of states called accepting states.

The NFA is a DFA if for each state s ∈ S and input symbol a ∈ L the
set move(s, a) contains at most one element, and the set move(s, ε) is always
empty.

Let N be an NFA, and let D denote the DFA we are trying to construct.
The states of D are sets of states of N . The sets are generated by looking for
the subset of states that can be reached by making any number (including zero)
ε moves from states in N .

We need the following notation. If s is a state in our NFA, T is a set of such
states, and a ∈ L then

ε− closure(T) is the set of NFA states reachable from NFA state s in T via
ε-transitions alone.

Ta is the set of NFA states to which there is a transition on input symbol a
from some state s in T . So Ta = moveN (T, a).

The algorithm for constructing the required DFA D is as follows:
The start state, T0, of D is ε-closure({s0}), the set of states which can be

reached from the start of N by just using ε arrows. Then for each a ∈ L,
calculate T0a – the set of states from N which can be reached from some state
in T0 along an arrow labelled a. If T0a is not empty, form the ε-closure of this
by adding all the other states which can be reached from states in T0a along
ε arrows. So we have a new state T1 = ε-closure(T0a) in D. We then put an
arrow labelled a from T0 to T1 by defining moveD(T0, a) = T1, and ‘mark’ the
state T0 as having been dealt with. We then repeat the process for each one the
new states that we have constructed. So for every a ∈ L we form T1a, the set
of states reachable using an a arrow from a state in T1, and then we calculate
ε-closure(T1a) etc. When all the states Ti that we have constructed are also
marked as having been dealt with then the construction of D is complete.

The start state of D is the state T0 which contains the start state of N . A
state in D is an accepting state if it contains at least one accepting state from
N . We call the transition function for D moveD() to distinguish it from the
move function for N .

Lexical Analysis 28

Example from CS1870

The subset construction on the NFA for (a | b) a (b | ε)∗ given above gives the
following sets.

T0 = ε-closure({0}) = {0, 1, 3} T0a = {2} T0b = {4}
T1 = ε-closure(T0a) = {2, 5, 6} T1a = {7} T1b = ∅
T2 = ε-closure(T0b) = {4, 5, 6} T2a = {7} T2b = ∅

T3 = ε-closure(T1a) = {7, 8, 9, 10, 12, 13, 14, 15} T3a = ∅ T3b = {11}
ε-closure(T2a) = T3

T4 = ε-closure(T3b) = {11, 14, 15, 9, 10, 12, 13} T4a = ∅ T4b = {11}
ε-closure(T4b) = T4

3

6

9

9
6

1

5

8

14
5

0

2

7

11
4

�
�
�
�
�
�
�
��
�
�
�

10

10

12

12

13

13

14

15

15

�
�
�
��
�
�
�

���
�:

XXXXz

PPPq
�
�
�
��
�
�
�

���1

a

b

a

a

PPPPq
b

z

b

start

T0

T1

T2

T3

T4

Pseudocode algorithms

The following is a formal algorithm for the above process.

Dstates := epsilon-closure(s0)

while there is an unmarked state T in Dstates do

mark T

for each input symbol a do

U := epsilon-closure(move(T,a))

if NOT U IN Dstates then

add U to Dstates

moveD(T,a):=U

Computing an ε-closure requires a graph search algorithm. Such algorithms
usually explore the graph by first pushing start nodes, and then popping a node,
exploring its neighbours and pushing them if they meet the search criterion.

push all states in T

initialise epsilon-closure(T) to T

while NOT stack empty do

pop t

for each state u with an edge from

t to u labeled epsilon do

if NOT u IN epsilon-closure(T)

push u

add u to epsilon-closure(T)

Lexical Analysis 29

3.8 Minimising a DFA

The procedure described so far may not give the most efficient DFA (i.e. the
one with the fewest states), so we consider an algorithm to minimize DFA’s.

AIM: Given a DFA (S,L,move, s0, A) find an equivalent more efficient DFA
(Snew, L,movenew, snew0 , Anew)

Suppose that we have a DFA with states S and accepting states A ⊆ S. We
begin by adding a new ‘dead’ state d and adding arrows from every other state
to d until there is an arrow labelled with each element of L. Thus we extend
the function move so that, for all s ∈ S′ = S ∪ {d} and a ∈ L,

move′(s, a) =

{
move(s, a), if this exists,
d, otherwise.

Start by dividing S′ into two disjoint partitions S1 = A and S) = (S\A) ∪
{d}. We define the process inductively. Suppose that we have already par-
titioned S so that we have disjoint subsets S0, . . . , Sn. For each set Si we
subdivide as follows: two elements s, t ∈ Si stay in the same subpartition if and
only if for all a ∈ L for some j, move′(s, a) and move′(t, a) both lie in Sj . When
the partition cannot be divided any further the process stops and we discard
the state containing d. If T0, . . . , Tm are the partitions constructed at the time
the process stops we choose one state from each set and use these to construct
the new DFA. Thus the new DFA has states Snew = {T0, . . . , Tm}; input
symbols L as before; the function movenew which is essentially the restriction
of the old move to the new set Snew, so movenew(Ti, a) = Tj , where, for ti ∈ Ti,
move(ti, a) ∈ Tj ; the new start state is Ti, where s0 ∈ Ti, and Ti is an accepting
state if it consists of accepting states from D.

Example

3

6

9

9
6

1

5

8

14
5

0

2

7

11
4

�
�
�
�
�
�
�
��
�
�
�

10

10

12

12

13

13

14

15

15

�
�
�
��
�
�
�

���
�:

XXXXz

PPPq
�
�
�
��
�
�
�

���1

a

b

a

a

PPPPq
b

z

b

start

T0

T1

T2

T3

T4

Start with
S0 = {d, T0, T1, T2} S1 = {T3, T4}

Build a move table in which the entry states are replaced with the set S0 or S1
to which they belong.

d T0 T1 T2 T3 T4
a S0 S0 S1 S1 S0 S0
b S0 S0 S0 S0 S1 S1

Split the states again

R0 = {d, T0} R1 = {T1, T2} R2 = {T3, T4}

Lexical Analysis 30

and build the move table

d T0 T1 T2 T3 T4
a R0 R1 R2 R2 R0 R0

b R0 R1 R0 R0 R2 R2

Split the states once more

U0 = {d} U1 = {T0} U2 = {T1, T2} U3 = {T3, T4}

and build the move table

d T0 T1 T2 T3 T4
a U0 U2 U3 U3 U0 U0

b U0 U2 U0 U0 U3 U3

This is now stable giving the minimum DFA�
�
�
�
�
�
�
�
�
�
�
�

start

U1 U2 U3

�
�
�
�- -
�

a, b a b

3.9 A lexical analysis algorithm using a DFA

It is simple to give an algorithm in pseudo code to recognize a string of input
characters as being in the pattern for a regular expression described by a DFA
which has start state s0, function move and accepting states N . We assume
that we have a routine nextch() that reads and returns the next symbol from
the input string

s := s0
c := nextch()
while move(s, c) is non-empty do

s := move(s, c)
c := nextch()
end

if s lies in N then return “YES”
else return “NO”

3.10 A lexer for the whole language

We now have what we need to build a lexical analyser provided that we can
define the patterns of the tokens of the source language by a regular grammar.

To make a pattern recogniser for the whole of the source language we write
separate state machines for each token and then join the algorithms together
so that the machine works through them until it finds the appropriate one. We
need to think about the order in which we put the algorithms to make sure that
we get the right behaviour.

Suppose that rather than having separate tokens for each of the symbols
<, <=, <> we have one token, say REL, so that a regular definition for REL is

rel → < (ε | = | >).

Then a DFA that recognizes the pattern of REL is:

Lexical Analysis 31

���0 �������1 �������2- -start
< =, >

Using this alone we cannot get our lexical analyser to do the ‘lookahead’ that
is needed. A solution is to actually have two DFA’s to recognize the pattern
for rel, and to put them in order.

���0 ���1 �������2- -< =, >

���0 �������1-<

When < is read as an input character the lexical analyser first tries the top DFA.
If it gets a match then the token REL is returned together with the lexeme of
current input characters. If the routine returns a non-match then the current
characters are pushed back onto the input stack and the lexical analyser begins
again this time using the second DFA.

This also allows us to distinguish between reserved words and identifiers
simply by getting the routine to check for reserved words first.

3.11 Lex

Lex is a lexical analyser generator – a software tool that takes as input a spec-
ification of a set of regular expressions together with actions to be taken when
an expression is recognized. The output of Lex is a program that recognizes
the regular expressions and takes the appropriate action. When the input ex-
pressions define the tokens of a programming language the output can be used
as a lexical analyser of a compiler for the language. Lex works by transforming
the regular expressions into equivalent DFA’s. It also provides a routine to read
the input characters.

The actions to be taken are written in C.
Using the editor, create a file ‘example.l’ that is the input to Lex. Then

type ‘lex example.l’ and Lex creates the file lex.yy.c which is written in C. This
file is then run through a C compiler, you can use the command ‘gcc lex.yy.c
-lfl’, which produces a program called a.out. This is the lexical analyser.

input ‘example.l’ −→ Lex −→ lex.yy.c

input lex.yy.c −→ C compiler −→ a.out

input character stream −→ a.out −→ tokens

An input file for Lex, a Lex program, has three parts: declarations, rules
and auxiliary procedures. Each part of the program is separated by a line ‘%%’.

Lexical Analysis 32

Lex program format:
declarations
%%
rules
%%
auxiliary procedures

Any of the three parts may be empty but the first line of separators cannot
be left out.

The declarations section includes declarations of variables and any regular
definitions that have been used as components of the regular expressions in the
rules section. We can also declare an identifier to represent a constant.

The rules section is a list of statements of the form p {action}, each
statement must be on a new line. action is a program fragment written in C
that describes what should be done if a lexeme input matches the pattern p.

The third section contains any auxiliary procedures that may be needed by
the actions.

The following is a very simple Lex program that generates a lexical analyser
which recognizes the symbols <, <=, <> as being lexemes for the token REL.
There are no auxiliary procedures and no regular definitions.

%{

#define rel 6

%}

rel <(=|>)?

%%

{rel} {printf("rel") ;}

%%

Lex recognizes various additional regular expressions that can be thought of as
abbreviations for formal regular expressions. In particular r? is (ε|r).

Create a file ex1.l, then type lex ex1.l. This produces lex.yy.c, so type gcc
lex.yy.c -lfl to produce a.out. Then if you type a.out and then < you will get
‘rel’ printed on the screen. Unrecognized character strings are echoed. So if
you type ‘and’ then ‘and’ will be repeated back to you.

Anything in the lex program appearing between a pair of brackets of the
form %{ and %} is copied directly into the output lex.yy.c. When constants
are declared the declarations are surrounded by such brackets.

The Lex language has many metasymbols. All the normal symbols needed
for regular expressions have their expected meaning. The expression [A–Z] is
understood by Lex to mean the set of all capital letters. A space is interpreted
as a blank space and \t and \n represent a tab and a newline respectively. If
we want a character which is a metasymbol to have its natural meaning then
we precede it by \. So to write a minus sign we need to write \–. Another
way to give characters their natural meaning is to enclose them by quotation
marks. If a string of characters is a name for a regular expression rather than
the expression itself then the string must be enclosed in braces. Lex then looks
back to the declared regular definitions to find the actual expression.

Lexical Analysis 33

The following is a list of ‘Lex regular expressions’. These should be thought
of as abbreviations for formal regular expressions. These are the expressions
that can be used in the regular definitions that define the patterns in the rules
section of the Lex input file.

c any non-operator character

\c the character c literally

’s’ the string s literally

. any character except newline

^ beginning-of-line

$ end-of-line

[s] any character in the string s

[^s] any character not in the string s

r{n,m} n to m occurances of r

(r) r

r/s r when followed by s

[a-z] the set of all lower case letters

[A-Z] the set of all upper case letters

[0-9] the set of all digits

\t tab

\n newline

If two substrings match a pattern, the longer is chosen. So if you type
<= <= it will return rel rel.

Lex is designed to be run as a subroutine for a parser generator such as
Yacc. In this case the action on recognizing a token is ‘return token’ which
returns the token to the parser that has called Lex. Thus the only output of
the lexical analyser is the token.

To pass an attribute value such as the lexeme we can set a global variable,
called yylval by Yacc, in which is placed the constant corresponding to the
lexeme.

%{

#define plus 3

#define times 4

#define op 5

#define rel 6

%}

rel <(=|>)?

%%

’+’ {yylval = plus; return(op) ;}

’*’ {yylval = times; return(op) ;}

{rel} {yylval = install_rel(); return(rel) ;}

%%

install_rel() {/* code for this procedure */}

There are two ways to get the lexical analyser to write lexemes to yylval. One
is to declare the name of a lexeme as a constant, then a rule is declared for

Lexical Analysis 34

each lexeme that says when the lexeme is input the value of the constant is
written to yylval and the appropriate token is returned. The other is to provide
a procedure, written in C, that returns the value of the appropriate lexeme.
This is listed in the auxiliary procedures section of the input. The code is put
between braces and will be copied verbatum into lex.yy.c.

Example: This is part of the input to generate a lexical analyser for a language
where identifiers can be any non-empty string of letters except for the keywords
‘if’, ‘then’ and ‘else’. It ignores any sequence of spaces, tabs, and newlines. The
statements in each action are separated and terminated by semi-colons.

%{

#define plus 3

#define times 4

#define op 5

#define rel 6

#define ifsym 7

#define thensym 8

#define elsesym 9

#define id 10

%}

rel <(=|>)?

delim [\t \n]

ws {delim}+

letter [A--Za--z]

id {letter}{letter}*

%%

{ws} { ;}

if {return(ifsym) ;}

then {return(themsym) ;}

else {return(elsesym) ;}

{id} {yylval = install_id(); return(id) ;}

’+’ {yylval = plus; return(op) ;}

’*’ {yylval = times; return(op) ;}

{rel} {yylval = install_rel(); return(rel) ;}

%%

install_id() { /* code for this procedure */}

install_rel() { /* code for this procedure */}

Lex has various defaults in line with the theory that we have discussed in earlier
sections. If the input to the lexical analyser created by Lex is matched by more
than one of the expressions used to create the program then it automatically
chooses the expression which matches the longest possible string of input. If
there is still ambiguity then the expression given first is chosen to be the match.
This is why the lexemes if, then and else cannot be identifiers.

There are many other features of Lex, we have only included a few here to
give an idea of the package. If you want to know more you can read the relevant
parts of Aho et.al. and the references given there.

Lexical Analysis 35

One useful feature that we haven’t discussed is the definition of tokens with
contexts. The context does the job of a lookahead operator. The lexeme DO
in FORTRAN represents the operator rather than an identifier (i.e. is dosym)
if it is followed by an integer, an identifier, =, an integer and a comma. In the
Lex language / denotes the context operator and we can write

DO / {digit}({letter}|{digit})∗ = ({digit}+|,)
which recognizes the string DO if it is followed by a string in the regular
expression following /.

3.12 Symbol tables

A symbol table is used to hold attribute information for identifiers. Attributes
are used to resolve context sensitivities as well as for housekeeping. Useful
attributes include

� the type,

� the reference level (constant, variable, pointer, . . .),

� the line and column at which the identifier is declared,

� a list of lines and columns at which the identifier is used,

� a value (especially for constants, but also for other reference levels in an
interpreter or optimising compiler),

� the scope.

We need functions to insert, delete and search for identifiers in a symbol table.
Here are declarations in C that might describe symbol table entries:

struct coordinate_struct {

unsigned line;

unsigned column;

struct coordinate_struct* next;

};

struct sym_tab_struct {

char * id;

int scope;

struct sym_tab_struct* type;

unsigned reference_level;

struct coordinate_struct instances;

union {

char c;

float f;

int i;

void *p

char *s;

} data;

};

Lexical Analysis 36

The most important field in the symbol table data type is the id which
acts as a search key. In a language with multiple scope regions (and very few
languages do not have more than one scope region) some way of representing the
identifier’s scope is needed. Here, we use an integer which is incremented as each
new scope region is entered, giving each scope a unique integer identification.

Identifiers have a type, and indeed some identifiers are labels for user defined
types! Hence, our type field is a pointer to another symbol table record that is
the type record itself.

The reference_level might in some implementations be incorporated into
the type record, but here we have an integer that records the number of indi-
rections that are required to convert an identifier into a value, with a constant
being level 0.

instances is used to keep track of the points at which identifiers are de-
clared and used. This information is useful when error messages are being
generated, and may also be used to construct a cross reference table of identi-
fiers.

struct coordinate_struct holds a line number, a column number and a
pointer to another coordinate. The field instances within symb_tab_struct

holds the coordinates of the identifier declaration and the next field points to
a linked list of coordinates at which the identifier is used.

The data union holds a variety of variables which may be used to hold
values for constants, intermediate results of expression evaluation and so on.

Symbol tables need to be of arbitrary size, since we do not know in advance
how many identifiers we will encounter during a particular compilation. We
could allocate a very large array, and then issue a fatal error message when it
fills up, but it is of course more space-efficient to use some kind of dynamic
data structure to hold the symbol table.

Some compilers never delete an entry in the symbol table because the records
are needed during the optimisation phases. Similarly, symbol entry is relatively
rare compared to lookup because we would expect every variable to be used at
least twice after declaration: at least once to write a value into it and at least
once to read the value. In practice variables are used far more often. Empirical
studies on Pascal programs indicate that symbol table searches are around 10
times more common than symbol table insertions.

Let us organise the symbol table as a single linked list, with new identifiers
being added at the head of the list.

i count nfile main- - --

Here, insertion is very cheap, but searching is expensive. When the list has n
elements we might expect an identifier to require n/2 comparisons before it is
found.

Brinch Hansen described such a table built into a Pascal compiler. When
working on a program with a 2,000 line program with 431 identifiers, the symbol
table had to do on average 184 comparisons per identifier search. Symbol table
lookup accounted for 25% of the execution time in this compiler. Of course,

Lexical Analysis 37

longer programs would display even worse behaviour. Linear searching is thus
unacceptable.

We could improve the performance of our linear list table by making one
list for each letter of the alphabet, and inserting all the identifiers that begin
with a particular letter on a separate list.

delta delay drain dozy- - --

count

boing

adrian

bcount

angle

beta-

-

-

-

-

-

This might improve search times by a factor of 26, whilst keeping insertion
time small. The catch is that identifiers are not evenly divided by initial letter.

If the identifiers could be distributed randomly (but predictably) between
the n lists then we would indeed achieve a factor n speed up. This is the
principle of the hash table.

3.13 Hash tables

A hash function is simply a calculation on a key that yields a random number.
Hash functions are deterministic – that is they always yield the same number
for a given key.

Perhaps the simplest hash function for a string is to add together the ASCII
values for all of the characters in the string, and then take the modulus of the
result with the number of sub-lists available. It turns out that this function
works best if there are a prime number of sublists. An even better result is
achieved if another number, coprime with the number of lists is factored in at
each addition. This generates repeated overflows:

hashnumber := 0;

for i:=0 to length_of_string(atr) do

hashnumber :== ord(str[i]) +

hashprime*hashnumber;

hashnumber := hashnumber MOD hashsize;

Most programming languages allow multiple scope regions. This, of course,
means that there can be multiple identifiers with the same name but different
attributes (otherwise there would be no point in having the multiple scopes).

The most common form of scope control is nested scope. Our organisation
automatically supports nested scope as long as we start searching from the start
of each list, since we will encounter the most recently declared instance of an
identifier key first.

We need some way of marking scope regions, if only to allow for the removal
of a scope region from the symbol table at the end of a scope region.

Lexical Analysis 38

data data
-

data data
- -

data
-

data

data
-

-

-

data data
- -

data
-

data
-

scope scope- - scope-

6

66]

j
6

6]

�

�

j

b[size-1]

b[size-2]

b[size-3]

b[1]

b[0]

scopes

current

�

� ���

��

����

���

Each symbol table is described by a header record that contains pointers to
a hash table, a scope list, various maintenance functions and some bookkeeping
data.

Whenever a symbol is to be inserted into the table, its key fields are hashed
generating a random number in the range 0 . . . size. This hash number is
then used to index into the hash table, selecting one of the linked lists. The
symbol is then added to the head of the list. A lookup is performed by hashing
the test symbol and then searching down the list for a match. Since the most
recent additions are always examined first, the structure directly implements
nested scope rules in that a new symbol will hide any symbols with the same
key deeper in the table.

The hash lists are doubly linked so that symbols can be quickly unlinked
from the chain.

Whenever a symbol is added to a hash list, it is also added to the head of
the current scope chain. New scope may be declared, in which case a new scope
record is created and added to the head of the scope list. The scope pointers
are represented by curved arrows. Although not shown on the diagram, each
symbol maintains a back link to its scope record allowing efficient checking of
the scope level for a particular symbol. The current scope may be reset to a
previously declared scope.

Syntax analysis I – top down parsers 39

4 Syntax analysis I – top down parsers

Having converted the input stream into a sequence of tokens, the compiler
now has to check that the token sequence does form a legitimate program, i.e.
that the input is syntactically correct. In this section we shall look at methods
for deciding whether an input program is syntactically correct. However, we
should begin by noting that syntax analysis usually involves more than just this
correctness check. If the input is correct then the syntax analyser may produce
a ‘derivation tree’ which is the first step in the semantic analysis of the input.
This reflects the fact that the syntax of a programming language is chosen to
allow constructs with particular meanings to be built into the language. Thus
in a real sense the syntax of a language is not separate from the semantics. The
syntax is the first step in defining the semantics, which makes it natural for the
output of the syntax analysis stage to be a structure from which much of the
semantics of the input can be constructed.

In order for the syntax analysis of a programming language to be effective
there must be a formal definition of the language. In this course these definitions
are given using grammars. The syntax analyser (or parser) receives a sequence
of tokens from the scanner and attempts to group these tokens into strings
in the language. The tokens are the terminals of the grammar. There are
many techniques which are used to recognise the syntactic structure of an input
program, but none of the ones commonly used in practice work on all possible
grammars, all possible context-free grammars, or even all grammars for actual
existing programming languages. In fact grammars are classified according to
various properties and then a parsing technique is used which is appropriate for
a grammar of that type.

In the main part of this section and in Section 5 we shall describe the top-
down recursive descent and bottom-up table driven parsing techniques, and we
shall discuss the properties that grammars must have if these techniques are
to generate correct parsers. Before doing this, we shall give a brief overview of
parsing techniques in general and then we will review grammars and derivations
and define derivation (parse) trees.

4.1 Parsing techniques and efficiency

When we discussed lexical analysis we gave a general technique which could
be used on any set of tokens whose patterns could be described by regular
expressions. The situation with syntax analysis is slightly different. There do
exist general parsing techniques which will work on all context free grammars,
but until recently these have not been practical. The best known general parsing
algorithm displays a time complexity of O(n2.37), although other algorithms
are known that can execute in O(n3) with smaller constants of proportionality.
Although these algorithms are theoretically interesting, traditionally they have
been considered unsuitable for real programming language translators because
even for short texts of around 1,000 elements running on fast computers which
might take 1µs to perform each parser step, parse times will be in the region of a
quarter of an hour. Simply doubling the size of the text to 2,000 elements raises

Syntax analysis I – top down parsers 40

the time required to around two hours. To guarantee linear time complexity
algorithms, we restrict our languages to those whose features allow them to be
parsed in linear time.

It may be that this situation changes in the future because is has not been
shown that general linear-time context free parsing is impossible, and also be-
cause nonlinear general parsing algorithms are becoming practical. It has been
proved that there do not exist linear time algorithms for certain computer sci-
ence related problems. In other areas, especially the theory of NP complete
algorithms, there exist strong suspicions that such algorithms can not exist. In
the field of context-free parsing algorithms, however, not only has nobody yet
demonstrated that there can not be a general linear-time algorithm, nobody
has produced a context-free grammar that could not parsed using an ad hoc
linear-time algorithm. What is lacking is a general method for finding such
parsers.

As we are concerned with automatic parser generation we shall approach the
topic by studying two parsing techniques which are efficient and then studying
the class of grammars to which each technique can be applied.

4.2 Grammars and languages

A context-free grammar is a 4-tuple (N,T, S,P), where N is a finite set of non-
terminal symbols, T is a finite set of terminal symbols, S is the start symbol
and lies in N , and P is a set of production rules of the form X ::= β where
X ∈ N\T and β is a string of elements from N and T .
Example:

terminals: ’if’, ’else’, ’stop’, ’=’, ’(’, ’)’,

’id’, ’digit’, ’skip’

non-terminals: stmt, exp

start: stmt

rules: stmt ::= ’stop’.

stmt ::= ’skip’.

stmt ::= ’if’ ’(’ exp ’)’ stmt ’else’ stmt.

stmt ::= ’if’ ’(’ exp ’)’ stmt.

exp ::= ’id’ ’=’ ’digit’.

exp ::= ’id’ ’<’ ’digit’.

When studying a programming language the terminals are the tokens of the
language, and the terms token and terminal are synonymous.

The symbol | is reserved and is used to group together several productions
with the same left hand sides. We shall describe grammars by listing their
production rules, the production rule for the start symbol being listed first.

E::=D | E∗D | E+D
D::= 0|1|2|3|4|5|6|7|8|9

is the language with terminals + ∗ 1 2 3 4 5 6 7 8 9, non-terminals E and D,
and start symbol E.

Syntax analysis I – top down parsers 41

This formal metalanguage for describing a language is called Backus-Naur
Form (BNF). It was introduced and used in the definition of Algol 60.

Let G be any grammar, let x be non-terminal and α and β be strings of
non-terminals and tokens. We write

αxβ ⇒ αγβ

if x ::= γ is a production rule in G. We write

δ
∗⇒ γ

if there exist αi such that

δ ⇒ α1, α1 ⇒ α2, . . . , αn ⇒ γ.

We allow n = 0 so δ
∗⇒δ. If n ≥ 1 we may write δ

+⇒γ.
We call a sequence

start⇒ α1 ⇒ . . . αn ⇒ γ

a derivation of γ.
A string u of elements of T is in the language generated by the grammar if

there is a derivation S
∗⇒u. The elements of the language are called sentences

of the grammar, and any string α such that S
∗⇒α is called a sentential form of

the grammar.

Example. The following is a derivation of 1 + 2 ∗ 3 from the grammar above:

E ⇒ E ∗D ⇒ E +D ∗D ⇒ D +D ∗D ⇒ 1 +D ∗D ⇒ 1 + 2 ∗D ⇒ 1 + 2 ∗ 3.

A derivation is left-most if the left-most nonterminal in the sentential form is
replaced at each derivation step. The above derivation is left-most. A derivation
is right-most if the right-most nonterminal in the sentential form is replaced at
each derivation step. For every left-most derivation there is a corresponding
right-most derivation. A nonterminal A is ambiguous if there is some string u
of terminals such that there are two different left-most derivations of u from A.
A grammar is ambiguous if is has an ambiguous nonterminal.

4.3 Exercises

1. Describe the languages denoted by the following regular expressions:

0(0|1)∗0, ((ε|0)1∗)∗, (00|11)∗((01|10)(00|11)∗(01|10)(00|11)∗)∗.

Write NFAs for each of these regular expressions.

(Harder) Write a regular expression that denotes the language of all strings
of 0’s and 1’s which contain an even number of 0’s and an odd number of 1’s.

2. In C++ floats are strings which consist of an optional plus or minus sign,
followed by one or more digits, followed by an optional sequence containing a
decimal point and another non-empty sequence of digits, then followed by an

Syntax analysis I – top down parsers 42

optional sequence beginning with E, then an optional plus or minus sign, then
a non-empty sequence of digits. For example, of the form 1234, –1.2, 34.567,
+46.7, 3.333E75, 1004.4444E–3, etc.

Give an NFA which recognises exactly the C++ floats, and hence write
down a regular expression which describes floats.

3. Using the grammar on page above, give two different derivations of the string

’if’ ’(’ ’id’ ’=’ ’digit’ ’)’ ’if’ ’(’ ’id’ ’<’ ’digit’ ’)’

’stop’ ’else’ ’skip’

4. Write a context free grammar for the language floats described in Ques-
tion 2 above.

4.4 Derivation trees

The primary role of the parser is, given a string u ∈ T ∗, to determine whether
or not u is a sentence in the given language. The parsing techniques which we
consider all involve attempting to reconstruct a derivation of the input string
u. There are two basic techniques that we consider: top-down and bottom-up.
A top-down parser begins with the start symbol and attempts to construct a
derivation of the input string from left to right. A bottom-up parser begins with
the input string and repeatedly replaces substrings with matching left-hand-
sides of production rules until the start symbol is obtained. This reconstructs
the parse from right to left. The names top-down and bottom-up reflect the
fact that derivations can be represented using trees.

Consider the grammar

start ::= [digit_list]

digit_list ::= digit | digit_list , digit

digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

and the derivation

start => [digit_list] => [digit_list , digit]

=> [digit_list , 0] => [digit_list , digit , 0]

=> [digit_list , 7 , 0] => [digit , 7 , 0] => [1 , 7 , 0]

This derivation can be represented as a tree:

S,1

/ | \

[DL,2]

/ | \

DL,4 , D,3 S = start

/ | \ | DL = digit_list

DL,6 , D,5 0 D = digit

| |

D,7 7

|

1

Syntax analysis I – top down parsers 43

S,1

/ | \

S,5 + S,2

| / | \

a S,3 * S,4

| |

b c

Figure 6 A derivation tree

We can represent derivations as ordered labelled trees. (That is, a tree
in which each node is labelled and the children of each interior node have a
specified left-right ordering.) Each interior node is labelled with a non-terminal
symbol and an integer, and each leaf is labelled with a terminal. The root node
is labelled with the start symbol S and the number 1. This node has a child for
each symbol in the phrase which immediately follows S in the derivation. The
order of the children corresponds to the order of the symbols in the production
rule. The node labelled with the non-terminal which is used for the next step
in the derivation is labelled 2, and has a child node for each symbol on the RHS
of the production rule used. We carry on in this way, labelling the each interior
node with the derivation step number and the non-terminal which is expanded
at that step. For instance, consider the following grammar and derivation
(which are expressed in the theoretical style – non-terminals are capitals and
everything else is a terminal):

S ::= S + S | S - S | S ∗ S | 0 | 1 | a | b | c
S ⇒ S+S ⇒ S + S ∗ S ⇒ S + b ∗ S ⇒ S + b ∗ c ⇒ a + b ∗ c

Labelled ordered trees which are constructed from derivations in the above way
are called derivation trees. The derivation tree describing these steps is shown
in Figure 6.

We can read a sentence of the language from the derivation tree by listing
the labels of the leaves of the tree from left to right.

Two or more distinct left-most derivation sequences may generate the same
sentence and hence sentences can have two or more derivation trees. The fol-
lowing two derivations and corresponding derivation trees also generate the
sentence a+ b ∗ c.

S ⇒ S+S ⇒ a + S ⇒ a + S ∗ S ⇒ a + b ∗ S ⇒ a + b ∗ c
S ⇒ S∗S ⇒ S + S ∗ S ⇒ a + S ∗ S ⇒ a + b ∗ S ⇒ a + b ∗ c

The corresponding trees are shown in Figure 7. If operators deeper in a
tree are considered to be more binding than those higher up, the first tree gives
the same operator precedence as the original derivation, but the last tree gives
addition priority over multiplication.

Syntax analysis I – top down parsers 44

S,1 S,1

/ | \ / | \

S,2 + S,3 S,2 * S,5

| / | \ / | \ |

a S,4 * S,5 S,3 + S,4 c

| | | |

b c a b

Figure 7 derivations from an ambiguous grammar

S,1 S

/ | \ / | \

S,4 + E,2 S + E

| / | \ | / | \

E,6 E,3 * T,7 E E * T

| | | | | |

T,8 T,5 c T T c

| | | |

a b a b

Figure 8 Derivation of arithmetic expressions

All three trees generate the sentence under consideration, and any of them
is sufficient to show that the sentence belongs to the language generated by the
grammar rule. The rule generating the grammar is ‘flat’ in the sense that it
does not force the derivation trees to have any particular shape. To exclude
the derivations which give addition higher priority than multiplication we can
modify the grammar rules. The language generated will be identical to the
original language, that is we can still generate exactly the same set of sentences,
but we can restrict the ‘shape’ of the derivation trees which can be produced.

For example, the following productions generate the same language.

S ::= S + E | S - E | E

E ::= E ∗ T | T

T ::= 0 | 1 | a | b | c

The following is a derivation of a + b ∗ c. The derivation tree is shown in
Figure 8.

S ⇒ S+E ⇒ S + E ∗ T ⇒ S + T ∗ T ⇒ E + T ∗ T ⇒ E + b ∗ T
⇒ T + b ∗ T ⇒ T + b ∗ c ⇒ a + b ∗ c

There are still several derivations of the sentence a+ b ∗ c, for example:

Syntax analysis I – top down parsers 45

S,1 S

/ | \ / | \

S,3 + E,2 S + E

| / | \ | / | \

E,5 E,4 * T,8 E E * T

| | | | | |

T,7 T,6 c T T c

| | | |

a b a b

Figure 9 Spurious ambiguity

S ⇒ S+E ⇒ S + E ∗ T ⇒ E + E ∗ T ⇒ E + T ∗ T ⇒ T + T ∗ T
⇒ T + b ∗ T ⇒ a + b ∗ T ⇒ a + b ∗ c

which is shown in Figure 9, but if we remove the numbers from the nodes the
derivation trees are indistinguishable. Since subsequent tree traversals are only
affected by the shape of the tree we have succeeded in specifying the semantics
unambiguously by changing the shape of the grammar.

In practice, the order in which the steps in a derivation were carried out is
not very important. Thus it is common practice to omit the labels from the
nodes of the derivation tree. We shall adopt this convention for most of the
rest of this course. However, it is important to remember that a derivation
tree without labels will usually correspond to several (essentially equivalent)
derivations, but will correspond to exactly one left-most derivation. Thus a
grammar is ambiguous if there exist two derivation trees, for the same string,
which are distinct even when written without labels.

4.5 Top down parsing

A top-down parser constructs parse trees by starting at the root and working
down to the leaves. The goal of a top-down parser is to produce, starting from
the start symbol, the string of terminals that have been presented to it as input.
At any point in the procedure part of the parse tree will have been constructed
and the current goal will be to construct the remainder of the tree in such a
way that its yield (the string of terminals which label the leaves of the tree)
matches the input string. The tree is extended by adding the children of a leaf
that is labelled by a non-terminal.

If there is more than one alternate in the production rule for the non-
terminal there will be a choice of children to be added. If the parse eventually
fails we will need to backtrack to this point and try again with a different choice
of children.

Syntax analysis I – top down parsers 46

4.5.1 Left-most top down parsing

In a left-most top down parser at each stage in the construction we begin
by considering the left-most leaf, of the tree so far constructed, that is not a
terminal. If no such leaf exists then the parse is complete. Suppose that the
first (left-most) child just added to the tree was a non-terminal. In this case we
extend the tree using a production rule whose left-hand side is the label of the
leaf and begin the process again. If no such rule exists then this attempt has
failed. If the first leaf is a terminal then the string obtained by starting with the
leftmost leaf of the tree and proceeding to the first leaf that is a non-terminal
must be a initial segment of the input string. If this is the case we carry on
and begin the process again with the next left-most leaf. If it is not then this
attempt has failed. In either case of failure we backtrack to the last point at
which we made a choice and try a different choice. If all possible choices at all
levels in the tree have been considered and failed then the parse fails and the
construction stops. If the parse produces a complete parse tree then there is still
failure if the yield is not the input string. If there is no possible backtracking
then the parse fails. The parse succeeds if the yield is the input string.

Example: E ::= P | c | P+E, P ::= a | a∗P. Parse: a + a + c.

E E E E ...

| | | / | \

P c P P + E

| / | \ | |

a a * P a P

|

a

If the nodes of the derivation tree constructed by a left-most top down parser
were numbered in construction order then it would correspond to a left-most
derivation.

It is possible to improve the efficiency of a top down parser by guiding the
choice of alternate used to extend a non-terminal node in the tree. If b is the
current symbol in the input stream and if A is the current (left-most) non-
terminal in the tree then we only consider using a production A ::= α to extend
the tree if α

∗⇒bδ for some δ. To describe this properly we need to consider the
so-called first sets.

4.5.2 first sets

Let G be a grammar and let γ be a string of tokens and non-terminals in G:
first(γ) = {t | t is a terminal and γ

∗⇒tα, for some α}.
If γ ⇒∗ ε then we also include ε in first(γ). For technical reasons we define
first(ε) to be the set {ε}.

In the grammar given at the beginning of Section 4.4 we have
first(start) = { [} and first(digit_list) ={0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

Syntax analysis I – top down parsers 47

For any token t, first(t) ={t}, and if γ = Xδ then, if X
∗⇒ε, first(γ) =

first(X)∪first(δ), and first(γ) = first(X) otherwise.

An algorithm for calculating first sets for non-terminals is as follows:

1. Do over all Pi and all alternates αj of Pi

2. Do over all the nullable leftmost nonterminals X in αj ,
calculate first(X) and add first(X)\{ε} to first(Pi).

3. If the next symbol in αj is a terminal, add that terminal to first(Pi)

4. If the next symbol in αj is a non-terminal X,
calculate first(X) and add it to first(Pi).

5. If there is no next symbol add ε to first(Pi).

4.5.3 Calculating first sets by hand

If a is a terminal then for any string γ we have

first(aγ) = {a}.

If A is a non-terminal then for any string γ we have

first(Aγ) = (first(A)\{ε}) ∪ first(γ) if A
∗⇒ ε,

and
first(Aγ) = first(A) if A 6 ∗⇒ ε,

If A is a non-terminal and A ::= α | β | γ say, then

first(A) = first(α) ∪ first(β) ∪ first(γ).

Example

S ::= aBA | BB | Bc A ::= Ad | d B ::= ε

We have

first(B) = first(ε) = {ε}
first(A) = first(Ad) ∪ first(d) = first(A) ∪ {d} = {d}
first(S) = first(aBA) ∪ first(BB) ∪ first(Bc)

= first(a) ∪ (first(B)\{ε}) ∪ first(B) ∪ (first(B)\{ε}) ∪ first(c)
= {a, ε, c}

A left-most top down parser that uses the first sets to guide the parse in
this way is an LL parser, because it reads the input from left to right and
constructs a left-most derivation. It is possible to use more than one symbol
of lookahead so we sometimes use the term LL(1) parser to indicate that one
symbol of lookahead is being used.

Syntax analysis I – top down parsers 48

4.6 Grammars which admit top down LL(1) parsers

We can view a parser as taking input a string and either not terminating, or
terminating and returning ‘success’ or ‘failure’.

We say that a grammar is compatible with a parsing technique if, given a
parser which uses the technique, whenever the parser terminates and returns
success on an input string u then u is in the language of the grammar.

We say that a grammar admits a parsing technique if it is compatible with it
and if, given a parser which uses the technique, for every input string the parser
terminates and returns success if the string is in the language of the grammar.

All of the parsing techniques which we shall consider are compatible with
every context-free grammar. However, top down LL parsers can fail to termi-
nate for some grammars, and all of the techniques we consider either require
back-tracking or can terminate in failure on some strings in the language of
some grammars.

We begin by looking at grammar properties which can prevent a parser from
terminating, and then we shall look at grammar properties which remove the
need for back-tracking.

4.6.1 Left recursion

Consider the grammar
S ::= Sb | a

and suppose that we attempt to use a top down LL parser to parse the string
abbb. Since at each stage the left-most non-terminal is extended the tree con-
structing process may never terminate.

S S S S S

/ \ / \ / \ / \

S b S b S b S b

/ \ / \ / \

S b S b S b

/ \ / \

S b S b

/ \

S b

The procedure recursively calls itself from the left forever. This prompts the
following definition:

A grammar is left recursive if it has a nonterminal A such that there is a

derivation sequence A
+⇒Aα for some string α. A production shows immediate

left recursion if A ::= Aα.
There is an algorithm which removes left recursion from a grammar pro-

vided that it has no cycles (derivations of the form A
+⇒A) or ε-productions.

Since there are also algorithms which remove cycles and ε-productions from
grammars, it is always possible to remove the left recursion from a grammar.

Syntax analysis I – top down parsers 49

4.6.2 Left recursion removal algorithm

We begin by describing an algorithm which removes immediate left recursion
and then use this as part of a general left recursion removal procedure.

Collect together all productions of A into a single production rule of the
form:

A ::= Aα1 | Aα2 | · · · | Aαm | β1 | β2 | · · · | βn.

where no βi begins with A.
This may then be replaced with the following rules:

A ::= β1B | β2B · · · | βnB.

B ::= α1B | α2B · · · | αnB | ε
where B is a non-terminal.

We now give the general left recursion removal algorithm.
Arrange the nonterminals in some order, say A1, A2, . . . An.

For i from 1 to n do

For j from 1 to i− 1 do

replace each production of the form

Ai ::= Ajγ by

Ai ::= δ1γ | δ2γ | . . . | δkγ
where Aj ::= δ1 | δ2 | . . . | δk are the current Aj productions.

eliminate the immediate left recursion amongst the Ai productions.

Theorem The grammar obtained using the above algorithm is equivalent to
(generates the same language as) the original grammar.

Example Remove the left recursion from the grammar

S ::= aBA | SB | Bc A ::= Sa | d B ::= Ad

Order the nonterminals S,B,A.
Remove the immediate left recursion from S

S ::= aBAM | BcM M ::= BM | ε

The rules for B have no immediate left instance of S or B so there is nothing
to do.
Substitute for initial instances of S in the rules for A

A ::= aBAMa | BcMa | d

Then substitute for initial instances of B

A ::= aBAMa | AdcMa | d

Remove the immediate left recursion from A giving the final grammar

S ::= aBAM | BcM M ::= BM | ε B ::= Ad

A ::= aBAMaN | dN N ::= dcMaN | ε

Syntax analysis I – top down parsers 50

4.6.3 Left factored grammars

If a parser has to back-track then the processing overheads are high, and often
unacceptable. If it is to guarantee to find a derivation, an LL parser will have
to back-track if it selects the wrong alternate from a production rule. We
choose an alternate only if the current input symbol is in the first set of that
alternate. Thus, if each terminal is in the first set of at most one alternate in
each production rule then we can tell which alternate to use at each step in the
construction of the derivation tree. This prompts the following definition:

A grammar is left factored if the first sets of any two alternates in a
production rule have no elements in common, i.e. if A ::= α|β then

first(α)∩first(β)=∅.
Sometimes it is possible to transform a grammar which is not left factored

in to one which is by adding a new non-terminal and associated production
rule. We can replace a rule of the form

A ::= γα|γβ

with the rules
A ::= γB B ::= α|β

4.6.4 Follow determinism

There is another reason for possible choice (non-determinism) in an LL parser
which can create the need for back-tracking. You can think of this as needing to
know when to stop matching a portion of the input to a particular non-terminal.

Consider the grammar

S ::= Aa A ::= a|ε

If we are asked to parse the string aa then we need to use the alternate A ::= a,
but if we are asked to parse the string a we need to use the alternate A ::= ε,
and we can’t tell which alternate to use just be looking at the current input
symbol because in both cases it is a. The problem here is that the input symbol
a can be both the start of a string generated by A and the start of the rest of a
string following an occurrence of A. The set of terminals which can begin the
rest of a string following an occurrence of a non-terminal are thus of interest
for guiding a parser.

For a non-terminal A we define
follow(A) = {t | t is a terminal and S

∗⇒βAtα, for some β, α}.
If there is a derivation of the form S

∗⇒βA then we also add a special end-of-file
symbol, usually written $, to follow(A). So in particular, $ ∈follow(S).

Calculating follow sets by hand

For each non-terminal A and for each rule B ::= αAβ we define a local follow
set of A as

FWB::=αAβ(A)

Syntax analysis I – top down parsers 51

to be first(β)\{ε}. If β
∗⇒ε then we also add follow(B) to FWB::=αAβ(A).

The follow(A) is the union of all the local follow sets for A, with $ added
if A = S.

Example

S ::= aBA | SB | Bc A ::= Aa | d B ::= d

We have

follow(S) = {$} ∪ FWS::=SB(S) = {$} ∪ first(B) = {$, d}

follow(A) = FWS::=aBA(A) ∪ FWA::=Aa(A) = follow(S) ∪ {a} = {$, d, a}

follow(B) = FWS::=aBA(B)∪FWS::=SB(B)∪FWS::=Bc(B) = {d}∪{$, d}∪{c}

A grammar is said to be follow determined if for any non-terminal A, strings
γ, δ and any terminal a,

A
∗⇒γ and A

∗⇒γaδ imply that a 6∈ follow(A).

It turns out that if a grammar is left factored then the following property is
enough to guarantee that it is also follow determined: For any non-terminal A,
if A

∗⇒ε then for all β such that A ::= β,
first(β)∩follow(A) = ∅.

4.6.5 LL(1) grammars

Grammars which admit non-back-tracking top down LL(1) parsers are precisely
the ones which are left factored, follow determined and have no left recursion.
Thus we have the following definition:

A context-free grammar is LL(1) if for all non-terminals A and productions
A ::= α|β we have

1. first(α) ∩ first(β) = ∅

2. If A
∗⇒ε then first(A)∩follow(A) =∅.

4.7 Top down LL parsing and recursive descent

We now consider an algorithm for implementing a top down LL parser. It
is possible store some processed version of the grammar in a table and use a
function to traverse the table, constructing portions of the tree according to
the table entry. This kind of parser is called a table driven parser and we shall
look at these in detail in Section 5.

An alternative approach, which has a particular affinity with top down
LL parsing, is to view the grammar as a form of parsing schedule comprised
of many individual sub-parsers, one per nonterminal. Each sub-parser is a
function that attempts to find a match against one of the alternate productions

Syntax analysis I – top down parsers 52

within that nonterminal’s rule. Instances of nonterminals on the righthand
side of a production are matched by calling the relevant sub-parser function:
it is clear therefore that the functions might be called recursively. A parser
constructed in this way is called a recursive descent (RD) parser and RD parsers
for LL(1) grammars are so easy to understand that they amenable to manual
construction. As such they are very popular in practice, and some languages
(especially Pascal) were designed to make them easy to parse using recursive
descent.

For example, we suppose we have functions gnt() which calls the lexer and
returns the next token, and error() which terminates the program and prints
a suitable error message. We write parse functions, parseA() for each non-
terminal A, and a main function which calls the parse function for the start
symbol.

main() {

x = gnt();

parseS();

if x == $ return success else return failure; }

Each parse function has a nested if statement which tests to see if the
current input symbol is in the first set of each alternate. For each alternate
we consider each symbol. If it is a non-terminal, A, we call the parseA(). If
it is a terminal we match against the input symbol and either call gnt() or
error().

S ::= T a | b c | a T S T ::= c T | d T | ε

parseS() {

if (x==c or x==d or x==a) {

parseT();

if (x==a) x=gtn() else error(); }

else if (x==b) {

if(x==b) x=gnt() else error();

if(x==c) x=gnt() else error(); }

else if(x==a) {

if(x==a) x=gnt() else error();

parseT();

parseS(); }

else error(); }

We match an ε alternate by simply returning rather than calling error()

if no alternate is selected.

parseT() {

if (x==c) {

if (x==c) x=gtn() else error(); }

parseT();

else if (x==d) {

if(x==d) x=gnt() else error();

parseT(); }

Syntax analysis I – top down parsers 53

The general method for constructing an RD parser from a grammar is as
follows.

Construct a main function that declares a global input variable x say, and
then calls a lexer function, gnt() say, to initialise x. Then call the parse
function, parseS(), for the start symbol S. Finally check to see if the value of
x is the end of string symbol and issue a success or failure message.

For each nonterminal A construct a parse function parseA() which has an
outer if statement that tests the value of x against the first set of each alternate
of A and follow(A) if the alternate is nullable. For each non-ε alternate
X1 X2 ... Xn and for each Xi in the alternate add a line to parseA() as
follows. If Xi is a nonterminal add a call to parseXi(). If Xi is a terminal, if
it equals the current value of x, call gnt() and assign the result to x, otherwise
issue an error message and terminate the parser. Finally, if there is no rule
A ::= ε, the last branch of the if statement should issue an error message and
terminate the parser.

In Section 4.9 we will describe a real parser generator, rdp, which can read
a grammar, check that it is LL(1) and output a recursive descent parser written
in C. The input grammars for rdp are written using a slightly different form of
BNF called extended BNF (EBNF) which we now describe.

4.8 EBNF

So far we have only considered defining grammars using BNF. However, some
patterns which occur in production rules are so common that it is useful to
define shorthand notations for them.

� parentheses (. . .) which create a sub-production (an unnamed produc-
tion),

� brackets [. . .] as shorthand for ‘optional’ or ‘zero or one occurrence’,

� braces {. . . } as shorthand for ‘zero or more occurrences’.

� angle brackets <. . .> as shorthand for ‘one or more occurrences’

Other notations that you might meet include

� (. . .)? for [. . .],

� (. . .)* (or Kleene closure) for {. . . } and

� (. . .)+ (or positive closure) for <. . .>.

A common construction is the delimited list. For instance, the array sub-
script example may be rewritten as

start ::= ’[’ digit { ’,’ digit } ’]’

(Here the terminals have been quoted.) A non-standard notation for this is as
follows:

Syntax analysis I – top down parsers 54

start ::= ’[’ (digit)@’,’ ’]’

The body of the expression (. . .) repeats after inserting a comma, as often as
required.

From a parsing perspective, {’,’ digit} reads like a while do loop and
digit @ ’,’ like a do while or repeat until loop

A further occasional requirement is to specify upper and lower limits on an
iteration. For instance, in some macro languages an upper limit of nine or ten
parameters is enforced. Variable name lengths are also commonly restricted.
The list construct has the following syntax:

list::= (alt) [INTEGER @ INTEGER token]

The first optional integer is the low count limit and the second integer the high
limit. So, for instance, a parameter list that must be between two and ten
elements long is written

params ::= ’(’ (ID) 2@9’,’ ’)’

A Pascal-style identifier with a ten character limit is written:

p_id ::= alpha (alpha | digit) 0@9 #

where # represents the empty string.
Our list construct subsumes all the other EBNF constructs. Firstly, we

allow a high limit of zero to represent ‘no high limit’. Secondly, the default
values of the ‘@’ attributes are:

� high limit zero, and

� low limit one

We have the following synonyms:

{. . . } (. . .)* (. . .)0@0#
<. . .> (. . .)+ (. . .)1@0#
[. . .] (. . .)? (. . .)0@1#
(. . .) (. . .) (. . .)1@1#

As an example we give the grammar for C--, a subset of ANSI C. Any valid
C-- program will be accepted by an ANSI compiler. The language differs from
C in that it has no pointer operations, no user defined types, and no switch,
goto, break or continue statements.

text ::= { type_name ID (’(’ (type_name ID)@’,’ ’)’ [block] |

[’=’ conditional]

[’,’ (ID [’=’ conditional])@’,’] ’;’

)

} .

block ::= ’{’ { declaration } { statement } ’}’.

Syntax analysis I – top down parsers 55

declaration ::= type_name (ID ([’[’ conditional ’]’] |

[’=’ conditional])

)@’,’ ’;’.

statement ::=

’while’ ’(’ expression ’)’ statement |

’do’ statement ’while’ ’(’ expression ’)’ ’;’ |

’if’ ’(’ expression ’)’ statement [’else’ statement] |

’for’ ’(’expression’;’expression’;’expression’)’ statement |

’return’ [expression] ’;’ |

expression ’;’ |

block.

type_name ::= ’char’ | ’float’ | ’int’ | ’unsigned’ | ’void’.

expression ::= assignment @ ’,’ .

assignment ::= conditional{(’=’ | ’*=’ | ’/=’ | ’=’ | ’+=’ | ’-=’

| ’<<=’ | ’>>=’ | ’&=’ | ’^=’ | ’|=’

) assignment

}.

conditional ::= lor [’?’ expression ’:’ conditional].

lor ::= land { ’||’ land }.

land ::= bor { ’&&’ bor }.

bor ::= bexor { ’|’ bexor }.

bexor ::= band { ’^’ band }.

band ::= equality { ’&’ equality }.

equality ::= relation { (’==’ | ’!=’) relation }.

relation ::= shift { (’<’ | ’<=’ | ’>’ | ’>=’) shift}.

shift ::= add { (’<<’ | ’>>’) add}.

add ::= mul { (’+’ | ’-’) mul}.

mul ::= prefix { (’*’ | ’/’ | ’%’) prefix}.

prefix ::=

{’++’ | ’--’ | ’+’ | ’-’ | ’~’ | ’!’ | ’*’ | ’&’} postfix.

postfix ::= primary [’++’ | ’--’] .

primary ::= ID { ’[’ expression ’]’ | ’(’ expression ’)’ }|

INTEGER | REAL |

STRING_ESC(’"’ ’\\’) | ’(’ expression ’)’ |

STRING(’\’’) .

A string (program) in the language C-- is:

int a, b = 2,c;

float f = 3.2;

char cc = ’c’;

void empty(int z) { }

float z(int a, char c) {

int d;

d = a+3 << 2 && 0x56;

Syntax analysis I – top down parsers 56

while (3>a) {

empty(a);

a++;

}

return 3.6;

}

4.9 rdp

rdp is a system for implementing language processors. Compilers, assemblers
and interpreters may all be written in the rdp source language (an extended
Backus-Naur Form) and then processed by the rdp command to produce a
program written in ANSI C which may then be compiled and run. rdp takes
as input an LL(1) grammar and produces a recursive descent based parser for
the language defined by that grammar.

(***** functn1.bnf *****)

S ::= INTEGER E .

E ::= ’+’ S | ’-’ S | ’;’ .

static void E(void){

if (scan_test(+)) {

scan_();

S(); }

else

if (scan_test(-)) {

scan_();

S(); }

else

if (scan_test(;)) { scan_(); }

else { /* report error in input */ }

}

void S(void){

scan_test(INTEGER);

scan_();

E();

}

int main(...) {

...

scan_();

S(); /* call parser at top level */

...

}

4.9.1 Acceptable languages

rdp generates parsers that work using recursive descent. It requires grammars
to be LL(1) (or something very close to LL(1)), that is they must be unam-
biguously parsable using a single token of lookahead and there must be no left

Syntax analysis I – top down parsers 57

recursive rules. This is not a significant constraint for modern languages like
Ada and Pascal which were to some extent designed with a view to easy parsing.
The main advantages of recursive descent parsing are

� fast (linear time) parsing,

� the availability of standardised error recovery mechanisms and

� the straightforward one-to-one relationship between the code in the parser
and the productions in the source EBNF. This makes it straightforward
to debug the grammar, because a C language debugger may be used to
step through the parser functions and, equivalently, to step through the
grammar productions.

If the grammar you present to rdp is not LL(1), rdp issues detailed diag-
nostics explaining which tokens and productions are giving the trouble. It is
possible to write algorithms that translate some non-LL(1) grammars automat-
ically to LL(1) form, but rdp does not attempt to perform any such transforma-
tions because that would produce an obscure parser that was no longer directly
related to the input grammar.

rdp is itself a language processor, and the rdp source language is LL(1). In
fact rdp is written in itself — an early version of the system was hand written
and later versions developed from a grammar written in terms of itself.

4.9.2 System flow

The steps involved in producing a new language processor for a mythical new
language myth with rdp are

1. Create a file myth.bnf containing an EBNF description of the myth lan-
guage. Decorate the grammar with attributes and C-language fragments
describing semantic actions. By convention, large semantic routines are
kept in a file called the auxiliary file with a name like myth_aux.c.

2. Process myth.bnf with rdp to produce myth.c.

3. Compile myth.c and myth_aux.c with an ANSI C compiler.

4. Link the myth object file with the rdp_supp modules and any other re-
quired semantic routines.

5. Run the resulting executable on myth.str, a test program for the myth

language.

This process is illustrated in Figure 10.

4.9.3 An example – the mini language

This section concerns the construction of a parser for a tiny language called
mini. The language includes variable declaration, assignment, the basic arith-
metic operators and a print procedure that can output a mix of variables and
strings. The grammar for language mini is shown in Figure 11.

Syntax analysis I – top down parsers 58

�
�

�
�
�
�

�
�
�
�

�
�

link

�
�

�
�

compile myth

�
�

�
�
�
�

�
�

rdp -omyth myth

�
�

�
�
�
�

�
�

compile myth aux

?

?

?

?

?

?

@
@
@R

�
�
�	

@
@
@R

�
�
�	

myth.bnf myth aux.c

myth.h myth.c

rdp supp modules myth object myth aux object

myth executable

�
�

�
�

myth test

�
�

�
�

?

?

myth.str

myth.out

���������)

PPPPPPPPPq

Figure 10 rdp design flow

Syntax analysis I – top down parsers 59

program ::= { [var_dec | statement] ’;’ }.

var_dec ::= ’int’ (ID [’=’ e1])@’,’.

statement ::= ID ’=’ e1 |

’print’ ’(’ (e1 | String)@’,’ ’)’.

e1 ::= e2 {’+’ e2 | (* Add *)

’-’ e2 }. (* Subtract *)

e2 ::= e3 {’*’ e3 | (* Multiply *)

’/’ e3 }. (* Divide *)

e3 ::= ’+’ e4 | (* Posite *)

’-’ e4 | (* Negate *)

e4.

e4 ::= ID | (* Variable *)

INTEGER | (* Numeric literal *)

’(’ e1 ’)’. (* Parenthesised expression *)

comment ::= COMMENT_NEST(’(*’ ’*)’). (* Comments *)

String ::= STRING_ESC(’"’ ’\\’). (* Strings for print *)

Figure 11 The mini grammar

Identifiers for production names follow C style rules: that is they must start
with a letter or underscore and can contain digits, letters or underscores. The
only limit on identifier length is the available text memory. rdp checks that
you have not used an identifier name that clashes with a C reserved word which
would of course cause surprising compile time errors.

Literal tokens are enclosed in single quotes. rdp understands a family of
built-in tokens for parameterised lexemes which includes ID for an alphanu-
meric identifier, INTEGER for a C style unsigned integer (including hexadecimal
numbers), EOLN for the end of line token and REAL for a C style real number.

rdp also understands a set of paramaterisable tokens used to describe strings
and comments. In the mini grammar COMMENT_NEST defines comment brackets
(* and *) which may be nested. The STRING ESC primitive specifies a C-style
string literal delimited by double quote characters (". . . ") with C-style escape
sequences introduced by the \ character. There is another string primitive that
implements Pascal style string literals.

EBNF files can also contain directives like TITLE and SUFFIX. These direc-
tives are used to control some aspects of the resulting parser. TITLE defines a
program title that will appear if the user of the mini parser asks for verbose
operation or makes an error. The SUFFIX directive declares a default file type
for the files that mini will parse.

Syntax analysis I – top down parsers 60

4.9.4 Building a mini parser

The grammar in Figure 11 can be submitted on its own to rdp which will
check it for non-LL(1) constructs and then construct a recursive descent parser
written in ANSI C. When the parser is compiled, it may be run on a mini

source file at which point any syntax errors in the mini file will be reported.
On a Unix system with gcc, the following commands build and run the mini

parser:

rdp -omini mini

gcc -o mini mini.c

mini mini.str

The following, mini.str, is a suitable mini test file.

int a=3+4, b=1;

print("a is ", a, "\n");

b=a*2;

print("b is ", b, ", -b is ", -b, "\n");

int z = a;

print(z, "\n");

(* End of mini.str *)

4.10 Strategies For Dealing With Ambiguity

If a grammar does not satisfy the conditions for a given parsing technique then
the parser will encounter a choice of action when using that grammar, and may
incorrectly reject a string if it makes the wrong choice. However, we may want
to use the parsing technique anyway, and in this case we build the parser so
that it makes the choice according to particular strategies.

For recursive descent parsers, one strategy is the first match strategy. With
this stragety the parser chooses the first alternate in the rule whose first set
contains the current input symbol. The nested ‘if’ statement in our rd parsers
automatically implements this approach.

Another strategy is the longest match strategy. With this strategy, if it
is possible to match two strings γ and γaβ to a non-terminal A then, when
the current input is a we choose to continue to try to match γaβ rather than
matching γ.

If a grammar is left factored then this choice will only arise when γ = ε. In
this case a recursive descent parser will implement longest match as part of its
first match strategy because the ε-rule is the last choice, executed only if none
of the alternates have the current input symbol in their first sets. For rdp,
if you run rdp with the flag -F this will force rdp to build a parser even if the
input grammar is not LL(1). The parser will use the first and longest match
strategies discussed here.

Given the rules

S ::= ′if ′ B ′then′ S E | ′a′ E ::= ′else′ S | ε

Syntax analysis I – top down parsers 61

a longest match rd parser will correctly resolve the well-known ‘if-then-else’
ambiguity.

These strategies will only work correctly on ambiguities. If the nondetermin-
ism is not an ambiguity then the application of these strategies will cause some
inputs to be incorrectly rejected by the parser. Thus they should be used with
extreme caution and only when the user fully understands their implications.

Syntax analysis II – bottom-up parsers 62

5 Syntax analysis II – bottom-up parsers

There is a large class of grammars which can’t be parsed using the LL top-down
technique without the need for back-tracking. Some of these grammars can be
modified so that LL techniques can be used efficiently, but there exist languages
for which it is impossible to write an LL(1) grammar.

In this section we consider bottom-up parsing techniques (building the parse
tree from the leaves up). We will look at LR(0) and SLR(1) parsing, which
admit successively larger classes of grammars. The ‘most powerful’ technique,
LR(1), can handle most grammars which arise in practice, although we shall
not focus on this in this course.

We are looking for algorithms which take as input a string X1X2 . . . Xn,
say, of terminals and non-terminals and which produce as output another string
Y1Y2 . . . Ym, if one exists, such that

S
∗⇒ Y1Y2 . . . Ym ⇒ X1X2 . . . Xn.

Such an algorithm is applied to an input string, then successively to its own
output with the aim of obtaining the string containing just the start symbol, S.

5.1 State machines for finding derivations

Suppose that we have an input string X1X2 . . . Xn and that we are trying to
construct the previous step Y1Y2 . . . Ym in the derivation.

We cannot expect to know for certain whether the string X1X2 . . . Xn can
be derived from S because determining whether strings can be derived from the
start symbol is the point of the whole process. If we could always tell at any
stage, then we wouldn’t need the process at all.

What we can do is check that the portion of the input that we read is an
initial segment of some sentential form. If not then we can terminate the process
because the parse has failed. Next we describe how to construct an NFA which
works as follows:

� It reads part of the input string X1 . . . Xi, say, and then stops.

� When it stops it either reports an error, or there is some string α such
that S

∗⇒X1 . . . Xiα and there is a production Z ::= XjXj+1 . . . Xi. In
the latter case, the string X1 . . . Xj−1ZXi+1 . . . Xn is returned. Replacing
the right hand side of a rule with its left hand side in this way is called a
reduction.

We shall illustrate the construction and operation of the NFA using the
following grammar which has a special augmented start rule S′ ::= S.

S′ ::= S
S ::= E;
E ::= E + T | T
T ::= 0 | 1

Syntax analysis II – bottom-up parsers 63

The start node of our NFA is a node labelled with S′ the augmented start
symbol. We are looking to construct a string just containing S and we describe
this state using the notation ·S. So we create a node labelled ·S and an arrow
labelled ε to it from the start node. If the input string is just S then we have
a complete, single step derivation and we can terminate and accept the string.
We achieve this by creating an accepting node, labelled S· to indicate that we
have seen the string S, and an arrow labelled S to this node.

If the input string is not S then we are looking to construct it, and this is
indicated by the node labelled ·S. To construct S we need to find one of the
alternates on the right-hand-side of a production rule for S. We create a new
special square node labelled S which has a child node for each alternate of the
rule for S (in this case E;). We put a dot in front of each of the alternates to
indicate that we are now looking for that string. Since the move from S to one
of it’s alternates doesn’t consume any of the input string the arrow between
these nodes is labelled ε.

���·E;

���S·

S

?

?

ε

S

����
���·S
S′

?
ε

3

ε

So now we are looking for E. If we read the next symbol of the input and it
is E then we can move on and look for the next symbol, in this case a semicolon.
Otherwise we need to look to construct an E. We build this into the NFA by
making a new square node labelled E. Thus we get

���·E;

���S·

S

?

?

ε

S

����
���·S
S′

?
ε

3

ε

���E·;?
E

E3

ε

To construct E then, as for S, we need to look for some alternate in the pro-
duction rule for E, so we add new nodes and epsilon arrows as for S. If we are
looking for a ‘;’, and we find one by reading the next input symbol, then we
move into a terminating (reduction) state.

Syntax analysis II – bottom-up parsers 64

���·E;

���S·

S

?

?

ε

S

����
���·S
S′

?
ε

3

ε

���E·;?
E

E

ε

E; ·
?

;

���·E + T ·T

�
S
Sw
εε

reduction

�� �

�
�
�
�

:

Once the NFA is in a reduction state it will have read from the input an
alternate from the production rule of the non-terminal in the nearest square
node back. In this case the node labelled S. Thus we can replace the alternate
with the non-terminal and return the resulting string.

In the case where we are looking to construct E we find we need to construct
either E + T or T . We may find either of these by reading the next input
symbol, or we may look to try to construct one of them. The decision to try to
construct E is represented by an ε-arrow back to the node labelled E, and to
try to construct T we create a new square node labelled T and proceed as for
the S and E nodes.

���·E;

���S·

S

?

?

ε

S

����
���·S
S′

?
ε

3

ε

���E·;?
E

E

ε

E; ·
?

;

���·E + T ·T

�

S
Sw
εε

reduction

�� �

�
�
�
�

:

E ·+T
�� �

T

ε ���·1

�

S
Sw
εε

:

?
T

T ·
?

E

reduction

�
�
�
�
���·0

1

ε

We carry on this construction process until all the branches of the NFA
terminate in reduction states. The complete NFA for the above grammar is

���·E;

���S·

S

?

?

ε

S

����
���·S
S′

?
ε

3

ε

���E·;?
E

E

ε

E; ·
?

;

���·E + T ·T

�

S
Sw
εε

reduction

�� �

�
�
�
�

:

E ·+T
�� �

T

ε ���·1

�

S
Sw
εε

:

?
T

T ·
?

E

reduction

�
�
�
�
���·0

E + ·T
�� �?

+

E + T ·
?

T

reduction

�
�
�
�

0·
?

0

reduction

�
�
�
�

?
1

1·
reduction

�
�
�
�

�

1614

1513

12

11

10

5

6

7

8

9

18

17

4

0

1

2

3

ε

*
ε

Syntax analysis II – bottom-up parsers 65

5.2 Using the state machine to parse

Given an input string X1X2 . . . Xm we begin in the start state of the NFA. Then
at each stage we either move along an ε arrow into another state or we read
the next input symbol and move into a new state along an arrow labelled with
that symbol, if one exists. If no moves are possible then the parse has failed. If
the NFA moves into a reduction state the string labelling this state will occur
in the input string. Replace this string with the non-terminal in the nearest
square node back, and return the result.

Suppose that we are attempting to parse the string 0 + 1; in the above
grammar, and that we have so far constructed E + 1;. Thus we have the
derivation steps E + 1; ⇒ T + 1; ⇒ 0 + 1; . To construct the next step,
starting in state 0 we run the NFA on E + 1;.

state input action

0 ^E + 1 ; move to state 1

1 ^E + 1 ; move to state 3

3 ^E + 1 ; move to state 4

4 ^E + 1 ; move to state 5

5 ^E + 1 ; move to state 6

6 ^E + 1 ; read input symbol

7 E^+ 1 ; read input symbol

8 E +^1 ; move to state 12

12 E +^1 ; move to state 15

15 E +^1 ; read input symbol

16 E + 1^; replace 1 by T, return string E + T ;

We now have the steps E+T ; ⇒ E+ 1; ⇒ T + 1; ⇒ 0 + 1; and we can run
the NFA again on the input E + T ;.

5.3 DFAs and LR(0) parse tables

The problem with the method we have described so far is that the NFA is non-
deterministic. If we want to use the NFA directly on a sequential computer, then
whenever we encounter non-determinism we must make an arbitrary decision
as to which transition to pursue. If it later turns out not to lead to a reduction
state, then we must backtrack and try the next option. This backtracking can
lead to very inefficient matching, however, we can use the subset construction
to reduce an NFA to an equivalent DFA which can then be traversed in linear
time.

5.3.1 DFAs from grammars via the subset construction

The states of the DFA are labelled with all of the productions which were
composed in the subset construction. Since we lose the square nodes we need
to add the left-hand-sides of the productions as well.

Applying the subset construction to the NFA from the previous section gives

Syntax analysis II – bottom-up parsers 66

T ::= 0·
reduction

�
�
�
�

S′ ::= S·
�� �

T ::= 1·
reduction

�
�
�
�

E ::= T ·
reduction

�
�
�
�

S ::= E·;
E ::= E ·+T

S ::= E; ·
reduction

�
�
�
�

T ::= ·0
T ::= ·1

E ::= ·T
E ::= ·E + T
S ::= ·E;
S′ ::= ·S

T ::= ·0
T ::= ·1

E ::= E + ·T

E ::= E + T ·
reduction

�
�
�
�

?
6

Z
Z
Z
Z
Z~

XXXXz

-

Q
Q
Q
QQs

S
1

0

+

;

T

����) �
�

�
��	

�
�
�
�

�
�
��>

-

E

T

'

&

$

%
#
"

!0

1 �
�
�
�

@
@
@
@R

0

1

2

3

4

5

6

7

8

The process of constructing the NFA then using the subset construction
to get the DFA is rather long winded. We give some definitions and then an
algorithm to construct the DFA directly.

A production A ::= γ ·α which has a ‘dot’ somewhere on its right hand side
is called an LR(0)-item.

If P is a set of items the closure of P , cl(P), is the smallest set which contains
P and all items of the form B ::= ·β where there is item of the form A ::= γ ·Bα
in P .

If P is a set of items and X is a terminal or non-terminal then PX is the
set of all items A ::= γX · α such that A ::= γ · Xα is in P . We define
move(P,X) = cl(PX).

5.3.2 Algorithm to directly construct an LR(0) DFA

� If S is the start symbol of the grammar and the production rule for S is
S ::= α1| . . . |αn, construct the start state

0 = cl({S′ ::= ·S}) = cl({S′ ::= ·S, S ::= ·α1, . . . , S ::= ·αn})

� For each grammar symbol X, form the set of items 0X and then the
closure cl(0X). If this set is not empty and has not been constructed
before it is a new state in the DFA. We draw an arrow labelled X from
state 0 to the state 0X whenever cl(0X) is not empty.

� For each new state n constructed and each grammar symbol X, form the
set cl(nX) and add an arrow labelled X from state n to state cl(nX) as
before. When no new states are constructed the DFA is complete.

� Let 1 = cl(OS) and mark this state as the accepting state.

� Reduction (accepting) states are the states which contain items of the
form A ::= α·

5.3.3 Parsing with a DFA

The parsing algorithm based on a DFA is slightly more straightforward than
the one based on the NFA. At every stage in the parse we read in the next input
symbol and move to the corresponding state if there is one. If there is no state

Syntax analysis II – bottom-up parsers 67

then the parse has failed. If we move into a reduction state then we replace the
identified right-hand-side of a production by the corresponding left-hand-side.
If we are in the acceptng state and the input symbol is $, success is reported.

It is usually more convenient to write the DFA as a table whose rows are
states, whose columns are input symbols and whose entries are the states to
move into from the given state if the given symbol is read. Such tables are
called LR(0) parse tables.

5.3.4 LR(0) grammars

A grammar is LR(0) if its LR(0) parse table does not contain any multiple
entries, or any rows with both a reduction and another non-empty entry.

The LR(0) parse table for the example we have been considering is

0 1 S E T + ; reduce by

0 4 5 1 2 3 - - -

1 - - - - - - - - report success

2 - - - - - 7 6 -

3 - - - - - - - E ::= T

4 - - - - - - - T ::= 0

5 - - - - - - - T ::= 1

6 - - - - - - - S ::= E;

7 4 5 - - 8 - - -

8 - - - - - - - E ::= E + T

If we use this table to process the string E + 1; we get

state input

0 E^ + 1 ;

2 E +^ 1 ;

7 E + 1^ ;

5 replace 1 with T, output E + T ;

There are LL(1) grammars which are not LR(0), and LR(0) grammars which
are not LL(1).

5.4 Stack based implementation

Rather than running the DFA in an LR(0) parser several times feeding its
output back into itself, we prefer to set the system up so that we just input the
string to be parsed and get as output either success or an error message. We
can achieve this by using a stack.

Syntax analysis II – bottom-up parsers 68

Table driven parser

$

0

X

7

$

*

...
-

-

�

Parse table

?

Output

*

*

*

Input Stack

-

The stack has the EOF character, written here as $, on the bottom and at any
time there is a string of states and grammar symbols on the stack, with a state
at the top.

We begin with $ and state 0 on the stack. At each stage in the parse, the
parser looks at the state on the top of the stack. If it is a non-reducing state
then the parser reads the next input symbol, pushes it onto the stack, looks up
the state,symbol entry in the parse table and pushes the entry state onto the
stack. If there is no entry the parse stops and an error message is given. If
the state on the top of the stack is reducing then the appropriate production
is found from the table, the symbols and states corresponding to the RHS are
popped off the stack, leaving state n, say, on the top. The RHS, A say, of the
production and the state at position (n,A) in the table are then pushed onto
the stack and the parser proceeds. If the state on the top of the stack is 1 then
the input is read and if it is $ (EOF) then the parser stops and reports success.

Example Parse 0 + 1;.

stack remaining input

$ 0 0 + 1 ; $

$ 0 0 4 + 1 ; $

$ 0 T 3 + 1 ; $

$ 0 E 2 + 1 ; $

$ 0 E 2 + 7 1 ; $

$ 0 E 2 + 7 1 5 ; $

$ 0 E 2 + 7 T 8 ; $

$ 0 E 2 ; $

$ 0 E 2 ; 6 $

$ 0 S 1 $

return success

The string of input symbols which is replaced by a non-terminal when a
reduction is carried out (i.e. the string of grammar symbols popped off the
stack) is called a handle.

Syntax analysis II – bottom-up parsers 69

5.5 SLR(1) parse tables

The problem with LR(0) parsing is that a large number of grammars are not
LR(0), i.e. their LR(0) parse tables contain some multiple entries and hence
the corresponding parser needs to backtrack.

5.5.1 A non-LR(0) grammar

The problem can be easily illustrated by making a slight modification to the
LR(0) grammar we used above. The following grammar is obtained by splitting
the first production into two parts (it still generates the same language).

S’ ::= S S ::= B ;

B ::= E E ::= E+T | T

T ::= 0 | 1

When we construct the LR(0) DFA for this grammar we get

T ::= 0·
reduction

�
�
�
�

S′ ::= S·
�� �

T ::= 1·
reduction

�
�
�
�

B ::= E·
E ::= E ·+T

S ::= B·; S ::= B; ·
reduction

�
�
�
�

T ::= ·0
T ::= ·1

E ::= ·T
E ::= ·E + T
B ::= ·E

S′ ::= ·S

T ::= ·0
T ::= ·1

E ::= E + ·T

E ::= E + T ·
reduction

�
�
�
�

?
6

Z
Z
Z
Z
Z~

XXXXz

-

Q
Q
Q
QQs

S
1

0

+

;

T

����) �
�

�
��	

�
�
��>

B

E
#
"

!0

1

S ::= ·B;

E ::= T ·
reduction

�
�
�
�

reduction

�
�
�
�

�
 �	
- PPPPq

�
�
��>T'

&

$

%
�
�
�
�

One of the reduction states, 3, contains two production rules. The effect of
this is that when we are in this state we don’t know whether to reduce, popping
E off the stack and pushing B, or to push the next input symbol in the hope
that it is +.

We could resolve the problem in this case if we read the next input character
before deciding whether to ‘shift’ or ‘reduce’. If the next input is + then we
need to push it onto the stack and hope to construct T next. If the next input
is ‘;’ then we need to reduce and get B onto the stack. If the input is any other
symbol then the parse cannot continue and we report an error.

Reading the next input symbol before deciding whether to shift it onto the
stack is known as one symbol lookahead. Using one symbol of look ahead vastly
increases the class of grammars which can be parsed using the table based
techniques we have been considering.

The idea is that reduction states become ‘conditional’ reduction states; they
are reduction states with certain next input symbols, and continuing states with
others. If we reduce the stack by replacing a handle with the corresponding
non-terminal, A, then the next input symbol needs to be in follow(A).

We modify the parse table to include extra information which may allow
us to decide whether to shift or reduce on a reduction state depending on the

Syntax analysis II – bottom-up parsers 70

next input character. We construct the states exactly as for the LR(0) parse
table. We then put sn (for shift input then state n onto stack) or rk (for reduce
using rule k) in entry (m,X) of the parse table, according to the following
construction.

5.5.2 Algorithm to construct an SLR(1) parse table

� Augment the grammar by adding a new special start symbol S′ and a
production rule S′ ::= S.

� Number the productions in the grammar for which the parser is being
generated.

� Construct the start state

0 = cl({S′ ::= ·S})

� For each grammar symbol X, form set of items 0X and then the closure
cl(0X). If this set is not empty and has not been constructed before it is
a new state.

� For each of the new states constructed and each grammar symbol form
the set cl(nX). Carry on in this way until no new states are constructed.

� Construct a table which has a row for each state and a column for each
grammar symbol and a column for the special EOF symbol $.

� For each state n and grammar symbol X, if m = cl(nX) put sm in the
(n,X)th entry of the parse table if X is a terminal and gm if X is a
non-terminal.

� If n contains an item of the form A ::= α., where A 6= S′, and if x ∈
follow(A) then put rk in the (n, x)th entry of the parse table, where k
is the number of the production A ::= α.

� If n contains S′ ::= S· put acc in the (n, $) entry of the table.

� all other table entries are blank (errors).

A grammar is SLR(1) if, in the table constructed as above, there is at most
one entry in each position.

5.5.3 SLR(1) grammars

Augmenting and numbering the productions for the grammar above we get

0. S′ ::= S 3. E ::= E + T 6. T ::= 1
1. S ::= B; 4. E ::= T
2. B ::= E 5. T ::= 0

Syntax analysis II – bottom-up parsers 71

The SLR(1) states are

0 = cl(S′ ::= ·S) = {S′ ::= ·S, S ::= ·B; , B ::= ·E,
E ::= ·E + T,E ::= ·T, T ::= ·0, T ::= ·1}

1 = cl(OS) = {S′ ::= S.·}
2 = cl(0B) = {S ::= B·; }
3 = cl(0E) = {B ::= E·, E ::= E ·+T}
4 = cl(0T) = {E ::= T ·}
5 = cl(00) = {T ::= 0·}
6 = cl(01) = {T ::= 1·}
7 = cl(2;) = {S ::= B; ·}
8 = cl(3+) = {E ::= E + ·T, T ::= ·0, T ::= ·1}
9 = cl(8T) = {E ::= E + T ·}
5 = cl(80) = {T ::= 0·}
6 = cl(81) = {T ::= 1·}

and the follows sets are

follow(S′) = {$} follow(S) = {$} follow(B) = {; }
follow(E) = {+ ; } follow(T) = {+ ; }

and the SLR(1) parse table for this grammar is

0 1 + ; $ S B E T

0 s5 s6 - - - g1 g2 g3 g4

1 - - - - acc - - - -

2 - - - s7 - - - - -

3 - - s8 r2 - - - - -

4 - - r4 r4 - - - - -

5 - - r5 r5 - - - - -

6 - - r6 r6 - - - - -

7 - - - - r1 - - - -

8 s5 s6 - - - - - - g9

9 - - r3 r3 - - - - -

The stack based implementation described for LR(0) parsers requires slight
modification to allow the use of SLR parse tables.

5.5.4 Stack based SLR parsing

� We begin with $ and state 0 on the stack.

� At each stage in the parse, the parser looks at the current input symbol,
x, the state, n, on the top of the stack and looks up the (n, x)th entry in
the parse table.

� If the entry is acc the parser terminates and reports success.

� If the entry is blank the parser terminates and reports an error.

� If the entry is sm the parser pushes x and then m onto the stack, moves
the input pointer on and proceeds to the next stage.

Syntax analysis II – bottom-up parsers 72

� If the entry is rk then the parser finds production number k, A ::=
X1 . . . Xj say, and pops the symbols Xj , . . . , X1 and intervening states
off the stack. It then looks at the state now at the top of the stack, p say,
reads the (p,A)th entry from the parse table, gq say, and pushes A and
then q onto the stack and proceeds to the next stage.

Example Parse 0 + 1; .

stack remaining input action

$ 0 0 + 1 ; $ s5

$ 0 0 5 + 1 ; $ r5

$ 0 T 4 + 1 ; $ r4

$ 0 E 3 + 1 ; $ s8

$ 0 E 3 + 8 1 ; $ s6

$ 0 E 3 + 8 1 6 ; $ r6

$ 0 E 3 + 8 T 9 ; $ r3

$ 0 E 3 ; $ r2

$ 0 B 2 ; $ s7

$ 0 E 2 ; 7 $ r1

$ 0 S 1 $ acc

All LR(0) grammars are SLR(1), but there are SLR(1) grammars which
are not LR(0). There are LL(1) grammars which are not SLR(1), and SLR(1)
grammars which are not LL(1).

5.6 LR(1) and LALR parse tables

There are still many grammars which are not SLR(1). For example, the gram-
mar

0.S′ ::= S 2.S ::= R 4.L ::= a
1.S ::= L = R 3.L ::= ∗R 5.R ::= L

has SLR(1) parse table

a = ∗ $ S L R

0 s5 - s4 - g1 g2 g3

1 - - - acc - - -

2 - s6/r5 - r5 - - -

3 - - - r2 - - -

4 s5 - s4 - - g8 g7

5 - r4 - r4 - - -

6 s5 - s4 - - g8 g9

7 - r3 - r3 - - -

8 - r5 - r5 - - -

9 - - - r1 - - -

which has multiple entries in one place. The problem is that state 2 is {S ::=
L· = R,R ::= L·} so when we are in this state we don’t know whether to reduce
the L to R or to carry on hoping to find = R.

Syntax analysis II – bottom-up parsers 73

This can be addressed by using local lookahead instead of the follow sets,
but we shall not discuss this extension in this course. The change is simply a
modification to the parse tables, the parsing algorithm itself is the same as for
LR(0) and SLR(1) parse tables.

All SLR(1) and LL(1) grammars are LR(1), but there are LR(1) grammars
which are not SLR(1) and some which are not LL(1). There are context free
grammars for which there is no equivalent LR(1) grammar, but it turns out
that in practice LR(1) grammars are general enough to allow us to write real
programming languages such as Java and C.

Historically there has been a problem with LR(1) parse tables because in
general they can have a very large number of states. It is possible to reduce the
number of states down to the same number as for SLR(1) parsers by combining
states where the only difference is in the lookahead sets. This reduces the class
of grammars which admit parsing using this technique, but it turns out that
many real grammars can still be handled. The tables obtained from LR(1)
tables by merging states which differ only in their lookahead sets are call LALR
tables. These are the tables used by the UNIX standard parser generator,
YACC.

5.7 YACC

YACC (Yet Another Compiler-Compiler) is a parser generator based on LALR
parsing. The basic structure of the input to YACC is very similar to that of
Lex.

declarations
%%

rules
%%

programs

The first %% and the rules section cannot be left out. Each rule is made up
of a BNF-style grammar rule and an optional action. The action is executed
when the rule is matched. Names representing tokens have to be explicitly
declared in the declarations section. The actions are written in C and enclosed
within braces. Typically these actions are used to generate a parse tree, directly
generate intermediate code or execute actions in an interpreter. YACC can be
run with Lex by adding the entry

#include "lex.yy.c"

to the programs section of the input file.
Figure 12 shows a Lex file called test.l and Figure 13 a YACC file called

test.y that uses the Lex generated lexer specified by test.l.
The lex program merely removes white spaces and tabs and recognizes se-

quences of digits as numbers. The function atoi is a C function that converts
the string representation of the constant into an integer and returns it to the
syntax analyser in the variable yylval, and returns the token NUMBER. The

Syntax analysis II – bottom-up parsers 74

%%

[\t] ; /*ignores blanks and tabs*/

[0-9]+ {yylval = atoi(yytext); return NUMBER;}

\n|. {return yytext[0];}

Figure 12 test.l – a test lex specification

%{

#include<stdio.h>

%}

%token NUMBER

%left ’+’ ’-’ /* gives + and - the same precedence */

/* and makes them left associative */

%%

comm: comm ’\n’

| /*empty command, no action taken*/

| comm expr ’\n’ {printf(‘‘%d\n", $2);}

| comm error ’\n’ {yyerrok; printf(‘‘Try again \n");}

;

expr: ’(’expr’)’ { $$ = $2; }

| expr ’+’ expr { $$ = $1 + $3; }

| expr ’-’ expr { $$ = $1 - $3; }

| NUMBER

;

%%

#include "lex.yy.c"

yyerror(s)

char*s;

{printf(‘‘%s\n", s);

}

main() {

return yyparse();

}

Figure 13 test.y – a YACC test file

Syntax analysis II – bottom-up parsers 75

operations + and − are not recognized: they are passed directly to the syntax
analyser.

The YACC specification describes a program that recognizes sums and dif-
ferences and converts them to integer equivalents and outputs the result. A
basic element of the grammar is a command, represented by the non-terminal
comm, and a command is a sequence of pairs ‘expression, newline’. In this
example YACC is employing so-called syntax directed translation to build an
interpreter: actions, enclosed in braces, appear after each grammar rule which
are executed whenever that rule is recognised.

The expression in a command can be empty in which case the action take
by the parser is to do nothing. If the expression is valid the action taken is to
print the value of the expression and a newline. If the expression is not valid
the error value is reset, by yyerrok, and an error message is output. The actions
associated with the grammar rules for expressions are to calculate the value of
the expression. The routine yyerror is called whenever the parser detects a
syntax error.

To use this example, type these files in, then issue the command

lex test.l

which creates the file lex.yy.c needed by YACC. Then type

yacc test.y

which creates a C program called y.tab.c. Compile this using the command

cc y.tab.c -lfl -o calculator

and the syntax analyser executable is made and output to the file calculator.
You can now run it giving it strings of expressions which it will evaluate.

Try typing calculator <return> 1+1 and the machine should return 2.

Try typing 3-4-5 and 3-(4-5) to see the effect of the YACC directive %left -.

Now type ((5) and see what happens.

5.8 Ambiguity in LR parses

A grammar ambiguity will cause a conflict in any type of LR table. We want to
be able to use LR parsers with grammars that have the standard ‘if-then-else’
ambiguity, so we want a longest match strategy.

For an LR parser, to continue to match γaβ rather than to match γ to
A means that we shift the current input symbol a onto the stack rather than
perform the reduction A ::= γ. Thus we implement the longest match strategy
by requiring the parser to choose the shift action rather than the reduce action
in a shift/reduce conflict. We achieve this by removing the reductions from the
shift/reduce conflicts in the parse table.

However, it is important to remember that, except for the case of ambiguity,
any strategy for dealing with choices in a parsing technique can cause the parser
to incorectly reject some strings. Even in the case of ambiguity, particular
derivations will not be found. So it is important only to use such a strategy
when you are sure that it’s effect will be the one you want.

Syntax analysis II – bottom-up parsers 76

5.9 Why have a scanner?

We finish the discussion of parsing by briefly considering whether we actu-
ally need a lexical analyser. We know that generative grammars are powerful
enough to handle the definition of tokens, so why not simply define our context
free language grammars over ASCII characters and cut out the lexical analysis
stage?

Efficiency : it would be tremendously inefficient to read each single character
from a disk file as it is required by the syntax analyser. In the case of a
backtracking analyser it might even be impossible on some operating systems
because of the difficulty of doing character level seek operations. So the input
buffering aspect of scanners is useful.

Even when the entire source text is held in memory, some operations are so
common that it is worth coding them specially. For instance, the bulk of many
programs is made of alphanumeric identifiers, some of which are keywords. If
we implemented keyword lookup by a cascade of if statements then significant
inefficiencies result. It is much better to recognise that a token begins with an
alpha, and then have a special routine that collects alphanumerics and looks
up the resulting string in a symbol table. Having a relatively small number of
tokens can allow more efficient syntax analysis techniques to be used.

Error reporting : If all of our keywords were implemented at character level
within the grammar, then we are ‘too close’ to the ASCII characters to present
useful error messages to the user. When analysing an ill formed string such as

if a=b else c=13 then d=14;

most real compilers can issue messages along the lines of

Line nnnn: scanned ’else’ whilst expecting ’then’

When the grammar is defined over tokens it is relatively easy to generate
such messages automatically. A definition over characters means that we cannot
easily see the wood for trees.

Removing formatting : Early computer languages such as FORTRAN used a
fixed format input style with one statement per line, and all statements starting
at a fixed point on the line (column 7!).

Most assemblers still impose a fixed format style but nearly all modern
languages allow free format input in which arbitrary (except sometimes non-
zero length) strings containing whitespace characters and/or comments may be
inserted between any two language tokens.

To describe such languages purely in a single level context free grammar
would require an immense grammar. Instead, the lexical analyser acts as a nor-
malising filter, removing redundant whitespace and comments from the input
before the syntax analyser sees it.

Syntax analysis III – GLL parsers 77

6 Syntax analysis III – GLL parsers

General parsers employ parsing techniques which can be used correctly with
all grammars and input strings. One of the earliest worst case cubic parsing
techniques was published by Jay Earley in 1970, although Earley’s description
of derivation tree construction was incorrect and giving a correct cubic version
turned out to be non-trivial.

There are general parsing techniques which are extensions of recursive de-
scent, and general techniques which are extensions of the LR approach. For
example, the LR technique fails if there is a conflict in the LR table. It is
possible to extend the technique to grammars whose tables contain conflicts by
exploring the execution paths corresponding to each choice. The problem is
that unless this is done carefully it can result in an algorithm which is worst
case exponential, or even nonterminating if the grammar contains cycles. There
do exist general extensions of LR parsers which are worst case cubic.

The main problem with extending the recursive descent technique to gen-
eral grammars has always been the problem of dealing with left recursion. Of
course, it is possible to remove the left recursion by running a preliminary left
recursion removal process before building the parser but the parser is then not
running on the original grammar, which can made debugging and maintenance
difficult. Even if this is done, simple backtracking techniques will still generate
exponential parsers in worst case.

In 2009 we published the first version of Generalised LL (GLL) parsing,
which handles all (including left recursive) context free grammars; runs in worst
case cubic time; runs in linear time on LL grammars and which also allows gram-
mar rule factorisation, with consequential speed up. In fact, the construction
is so straightforward that implementation by hand is feasible, we constructed
a GLL parser for ANSI C before our parser generator tool was built. In this
chapter we will give an introduction to the basic, recogniser only, version of
GLL. The key to the GLL approach is the explicit handling of what would be
the function call stack in a recursive descent parser.

6.1 Introduction to GLL

Recall that a recursive descent parser consists of a collection of parse functions,
parseA(), one for each non-terminal A in the grammar. The function selects
an alternate, α, of the rule for A, according to the current symbol in the input
string being parsed, and then calls the parse functions associated with the
symbols in α. As we have already seen, it is possible that the current input
symbol will not uniquely determine the alternate to be chosen (the grammar
is not left factored or is not follow determined), and if A is left recursive the
parse function can go into an infinite loop.

GLL parsers extend recursive descent parsers to deal with non-determinism
by spawning parallel processes, each with their own stack. This approach is
made practical by combining the stacks into a graph structured stack (GSS)
which recombines stacks when their associated processes converge. Each of
the parallel processes is recorded in a process descriptor, which represents the

Syntax analysis III – GLL parsers 78

process configuration at that point. The descriptors are processed in turn,
ensuring that all possible derivation routes are explored. Keeping a record of
the descriptors ensures that no exploration path is repeated and this is what
makes the parsers worst case cubic.

6.2 Using explicit call stacks

We begin by describing the basic approach using an LL(1) grammar Γ0. We
will then extend the discussion to non-LL(1) grammars.

Consider the grammar Γ0.

S ::= A S d | B S | ε
A ::= a | c
B ::= b

A traditional recursive descent parser for Γ0 is composed of parse functions
parseS(), parseA(), parseB() and a main function. We suppose that the input
is of length m and is held in a global C-style array I of length m + 1, where
I[m] = $, the end-of-string symbol.

main() { i := 0
parseS()
if I[i] == $ report success else error() }

parseS() {
if (I[i] == a or I[i] == c}) {

parseA()
parseS()
if (I[i] == d) { i := i+ 1 } else error() }

else {
if (I[i] == b) { parseB()

parseS() } } }

parseA() {
if (I[i] == a) { if (I[i] == a) { i := i+ 1 } else error() }
else {

if (I[i] == c) { if (I[i] == c) { i := i+ 1 } else error() }
else error() } }

parseB() {
if (I[i] == b) { if (I[i] == b) { i := i+ 1 } else error() }
else error() } }

We have replaced the gnt() used in traditional RD parsers because a GLL
parser will need to access tokens at specified input positions as different process
branches are explored. Instead of a variable holding the current input symbol,
the global variable i holds the current position of the input pointer, and will be
stored as part of the GLL process descriptor in the full version of the approach.
The function error() terminates the algorithm and reports failure.

Syntax analysis III – GLL parsers 79

To convert this into a GLL-style parser we turn the function calls into ex-
plicit call stack operations using push, pop and goto statements. In a simple
algorithm the actions are executed sequentially, in the order that they are writ-
ten. We can specify a different sequence by labelling actions and using a goto L
instruction to move the execution to the point labelled L. We label the start
of each parse function and the return position from each parse function call.
The goto statements will jump to the labels at the start of parse functions, the
labels of the return positions will be pushed on to a stack s and popped at the
end of the function call. Initially the label of the start of the main function is
put on the stack. In addition, when the stack is popped the label retrieved is
put initially into a set R.

Explicit-stack-handling parser for Γ0

i := 0; R := ∅; s := [L0]
goto LS

L0: if (R 6= ∅) remove an element L say from R and goto L
else { if (s == [] and i == m) return success else return failure }

LS :
LS1 : if (I[i] == a or I[i] == c}) {

push(s,R1); goto LA
R1: push(s,R2); goto LS
R2: if (I[i] == d) { i := i+ 1 } else goto L0

pop(s,R)
goto L0 }

LS2 : if (I[i] == b) {
push(s,R3); goto LB

R3: push(s,R4); goto LS
R4: pop(s,R)

goto L0 }
LS3 : if (I[i] == d or I[i] == $}) {

pop(s,R); goto L0 }
goto L0 /* if all tests fail go to L0 */

LA:
LA1 : if (I[i] == a) {

if (I[i] == a) { i := i+ 1 } else goto L0

pop(s,R)
goto L0 }

LA2 : if (I[i] == c) {
if (I[i] == c) { i := i+ 1 } else goto L0

pop(s,R)
goto L0 }

goto L0

LB:
LB1 : if (I[i] == b) {

if (I[i] == b) { i := i+ 1 } else goto L0

pop(s,R)
goto L0 }

Syntax analysis III – GLL parsers 80

goto L0

Here LS1 , LS2 and LS3 label the blocks of code corresponding to the three alter-
nates in the grammar rule for S, and there is specific code for the ε alternate.
These labels will be required in the non-LL(1) version. The labels R1 and R2

label the return positions of the calls to parseA() and parseS() in the first
alternate of S. The other labels have similar roles. There are no calls to an
error function. If the parse action fails then the algorithm simply jumps back
to the termination code at L0. Because no element will have been popped from
the stack, R will be empty but s will not, so failure will be returned.

The functions push() and pop() are defined in the natural way as follows.

push(s, L){ s := [s, L] }

pop(s,R){ if (s is not empty) {
remove the top element, L say, from s
add L to R } }

Example We work through this algorithm using the input string bcd, keeping
track of the values of the variables i, R and s.

I=[b,c,d,$] m=3 i=0 R={} s = [L0]

I[0]=b so test at LS1 fails

test at LS2 succeeds

push R3 onto s i=0 R={} s=[L0, R3]

goto LB

I[0]=b so test at LB1 succeeds

increment i i=1 R={} s=[L0, R3]

pop s i=1 R={R3} s=[L0]

goto L0

remove R3 from R i=1 R={} s=[L0]

goto L=R3

push R4 onto s i=1 R={} s=[L0, R4]

goto LS

I[1]=c so test at LS1 succeeds

push R1 onto s i=1 R={} s=[L0, R4, R1]

goto LA

test at LA1 fails

test at LA2 succeeds

increment i i=2 R={} s=[L0, R4, R1]

pop s i=2 R={R1} s=[L0, R4]

goto L0

Syntax analysis III – GLL parsers 81

remove R1 from R i=2 R={} s=[L0, R4]

goto R1

push R2 onto s i=2 R={} s=[L0, R4, R2]

goto LS

I[2]=d so test at LS1 fails

test at LS2 fails

test at LS3 succeeds

pop s i=2 R={R2} s=[L0, R4]

goto L0

remove R2 from R i=2 R={} s=[L0, R4]

goto R2

increment i i=3 R={} s=[L0, R4]

pop s i=3 R={R4} s=[L0]

goto L0

remove R4 from R i=3 R={} s=[]

goto R4

pop s i=3 R={L0} s=[]

goto L0

remove L0 from R i=3 R={} s=[]

goto L0

R is empty, s=[], i=3=m so return success

Additional Exercises Work through the above algorithm in the same way
using the strings (i) acd, (ii) b, (iii) aadd, (iv) ε, (v) da, (vi) add, and (vii) ccd,
recording the values of the variables i, R and s at each step.

6.3 Non-LL(1) grammars - using elementary descriptors

If we have a grammar which is not LL(1) then simply directly handling the call
stack is not sufficient. There can be several alternates of a nonterminal with the
same element in their first sets and we need to execute each choice. To do this
efficiently we use descriptors to record the current parser configuration at the
point of a choice, and store the descriptors in a set R for subsequent processing.
The outer structure of a GLL algorithm is thus a loop which removes an element
fromR and continues the parse from the configuration recorded in that element.
The algorithm terminates when there are no further descriptors to be processed.

It is possible for the parser to get into the same configuration in different
ways and to avoid processing the same descriptor more than once we maintain
a set U of all descriptors that have been added to R.

The parser configuration at any point consists of the line of the algorithm
the parser is at, the call stack and the current input position. So we initially
use elementary descriptors of the form (L, s, i), where s is a complete stack.

Syntax analysis III – GLL parsers 82

This will be inadequate in general because there may be infinitely many stacks,
which is why we refer to these as elementary descriptors. In the full version of
the algorithm we will combine the stacks into a single structure and just record
the node corresponding to the top of the stack. First, however, we illustrate
the way in which descriptors are used with just elementary descriptors and the
grammar Γ1 below.

S ::= A S d | B S | ε
A ::= a | c
B ::= a d | b

A traditional recursive descent parser for Γ1 has the form
main() { i := 0

parseS()
if I[i] == $ report success else error() }

parseS() {
if (I[i] == a or I[i] == c}) {

parseA()
parseS()
if (I[i] == d) { i := i+ 1 } else error() }

else {
if (I[i] == a or I[i] == b}) { parseB()

parseS() } } }

parseA() {
if (I[i] == a) { if (I[i] == a) { i := i+ 1 } else error() }
else {

if (I[i] == c) { if (I[i] == c) { i := i+ 1 } else error() }
else error() } }

parseB() {
if (I[i] == a) { if (I[i] == a) { i := i+ 1 } else error()

if (I[i] == d) { i := i+ 1 } else error() }
else {

if (I[i] == b) { if (I[i] == b) { i := i+ 1 } else error() }
else error() } }

Γ1 is not LL(1) so, as we know, this algorithm will not behave correctly without
some additional mechanism for dealing with non-determinism.

An elementary descriptor is a triple (L, s, j) where L is a line label, s is a
stack and j is a position in the input array I. We maintain a set R of current
descriptors. When a particular execution thread of the algorithm stops, at input
I[i] say, the top element L is popped from the stack s = [s′, L] and (L, s′, i) is
added to R (if it has not already been added). We use pop(s, i,R) to denote
this action. Then the next descriptor (L′, t, h) is removed from R and execution
starts at line L′ with stack t and input symbol position h. The overall execution
terminates when the set R is empty.

Syntax analysis III – GLL parsers 83

In order to allow us, later, to combine stacks we record both the line label
L and the current input buffer index k, using the notation (L, k). We use
a function push(s, L, k) which simply updates the stack s by pushing on the
element (L, k).

Each time a nonterminal is encountered, where the RD parser makes a
parse function call, a GLL algorithm applies a test against the first set of
each alternate and, for each alternate which passes the test, an elementary
descriptor is created and stored for subsequent processing. Also, where an RD
parse function would have terminated, a GLL parser creates an elementary
descriptor, via the pop function, and this stored for processing.

Below is an elementary GLL algorithm for Γ1, assuming that the input is
of length m and is held in an array I.

Elementary-descriptor-based parser for Γ1

i := 0; s := [(L0, 0)]; U := {(Ls, s, i)}; R := ∅
goto LS

L0: if (R 6= ∅) { remove (L, s1, j) from R
s := s1; i := j; goto L }

else {
if ((L0, [],m) ∈ U) report success else report failure }

LS : if (I[i] ∈ {a, c}) add((LS1 , s, i), R)
if (I[i] ∈ {a, b}) add((LS2 , s, i), R)
if (I[i] ∈ {d, $}) add((LS3 , s, i), R)
goto L0

LS1 : push(s,R1, i); goto LA
R1: push(s,R2, i); goto LS
R2: if (I[i] == d) { i := i+ 1 } else goto L0

pop(s, i,R); goto L0

LS2 : push(s,R3, i); goto LB
R3: push(s,R4, i); goto LS
R4: pop(s, i,R); goto L0

LS3 : pop(s, i,R); goto L0

LA: if (I[i] ∈ {a}) add((LA1 , s, i), R)
if (I[i] ∈ {c}) add((LA2 , s, i), R)
goto L0

LA1 : if (I[i] == a) { i := i+ 1 } else goto L0

pop(s, i,R); goto L0

LA2 : if (I[i] == c) { i := i+ 1 } else goto L0

pop(s, i,R); goto L0

Syntax analysis III – GLL parsers 84

LB: if (I[i] ∈ {a}) add((LB1 , s, i), R)
if (I[i] ∈ {b}) add((LB2 , s, i), R)
goto L0

LB1 : if (I[i] == a) { i := i+ 1 } else goto L0

if (I[i] == d) { i := i+ 1 } else goto L0

pop(s, i,R); goto L0

LB2 : if (I[i] == b) { i := i+ 1 } else goto L0

pop(s, i,R); goto L0

Below are the definitions of the support functions that are being used.

push(s, L, i){ s := [s, (L, i)] }

pop(s, i,R){ if (s is not empty) {
remove the top element, (L, j) say, from s to get s′

if ((L, s′, i) is not in U) {
add (L, s′, i) to R and to U } } }

add((L, s, i),R){ if ((L, s, i) is not in U) {
add (L, s, i) to R and to U } }

Example As an example we execute the above algorithm with input ad, keeping
track of the values of the variables i, R and s. In this example we will only
report the values of variables when they change.

I=[a,d,$] m=2

i=0 R={} s = [(L0,0)] D1 = (L0,[(L0,0)],0) U = {D1}

goto LS I[0]=a so two descriptors are created at LS

D2 = (LS1,[(L0,0)],0) D3 = (LS2,[(L0,0)],0) R={ D2, D3 }

goto L0 remove D2 from R s=[(L0,0)] i=0 R={ D3 }

goto LS1 push(s,R1,0) s=[(L0,0) (R1,0)]

goto LA I[0]=a so one descriptor is added

D4 = (LA1,[(L0,0) (R1,0)],0) R={ D3, D4 }

goto L0 remove D3 from R s=[(L0,0)] i=0 R={ D4 }

goto LS2 push(s,R3,0) s=[(L0,0) (R3,0)]

goto LB I[0]=a so one descriptor is added

D5 = (LB1,[(L0,0) (R3,0)],0) R={ D4, D5 }

goto L0 remove D4 from R s=[(L0,0) (R1,0)] i=0 R={ D5 }

goto LA1 increment i, i=1

pop s, so one new descriptor is added

D6 = (R1, [(L0,0)], 1) R={ D5, D6 }

goto L0 remove D5 from R s=[(L0,0) (R3,0)] i=0 R={ D6 }

goto LB1 I[0]=a so increment i, i=1

I[1]=d so increment i, i=2

Syntax analysis III – GLL parsers 85

pop s, so one new descriptor is added

D7 = (R3, [(L0,0)], 2) R={ D6, D7 }

goto L0 remove D6 from R s=[(L0,0)] i=1 R={ D7 }

goto R1 push(s,R2,1) s=[(L0,0) (R2,1)]

goto LS I[1]=d so one descriptor is added

D8 = (LS3,[(L0,0) (R2,1)],1) R={ D7, D8 }

goto L0 remove D7 from R s=[(L0,0)] i=2 R={ D8 }

goto R3 push(s,R4,2) s=[(L0,0) (R4,2)]

goto LS I[2]=$ so one descriptor is added

D9 = (LS3,[(L0,0) (R4,2)],2) R={ D8, D9 }

goto L0 remove D8 from R s=[(L0,0) (R2,1)] i=1 R={ D9 }

goto LS3 pop s, so one new descriptor is added

D10 = (R2, [(L0,0)], 1) R={ D9, D10 }

goto L0 remove D9 from R s=[(L0,0) (R4,2)] i=2 R={ D10 }

goto LS3 pop s, so one new descriptor is added

D11 = (R4, [(L0,0)], 2) R={ D10, D11 }

goto L0 remove D10 from R s=[(L0,0)] i=1 R={ D11 }

goto R2 increment i, i=2

pop s, so one new descriptor is added

D12 = (L0, [], 2) R={ D11, D12 }

goto L0 remove D11 from R s=[(L0,0)] i=2 R={ D12 }

goto R4 pop s, the descriptor (L0, [], 2) is in U, so no action

U={ D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12 }

goto L0 remove D12 from R s=[] i=2 R={ }

goto L0

R is empty, (L0, [], 2) is in U, report success

6.4 The GSS and the set P
The problem with the approach as it is described above is that for some gram-
mars the number of descriptors created can be exponential in the size of input,
and the process does not always terminate for grammars with left recursion. We
deal with these issues by combining the stacks into a single, global graph struc-
ture, a graph structured stack (GSS), recording only the corresponding stack
top node in the descriptor, and using loops in the GSS when left recursion is
encountered.

We can represent any stack as a chain of nodes labelled with the stack
elements. For example [1, 4, 15, 11, 6, 5] can be represented as

������������������ 4 15 11 6 51 � � � � �

If we had, say, two other stacks, [1, 4, 7, 2, 6, 5] and [1, 4, 15, 3], then these could
be combined with the first into a graph structure.

������
���

���
���
���
��������� 4 15

7

11

2

3

6 51 � � �

�

� �

�
�
��/ S

S
SSo

���� u
v

Syntax analysis III – GLL parsers 86

The node u represents both the first two stacks and the node v represents the
third stack. Space is saved by sharing common parts of the stacks, and, for
GLL parsers, the number of descriptors is reduced by combining elementary
descriptors whose stacks have a common top element.

To understand the basic concept of a GSS as used in our GLL parsers,
consider again the grammar Γ1 and input ab.

We can represent the initial stack [(L0, 0)] as a single node u1 labelled (L0, 0).
Because we shall record nodes rather than full stacks we need a way to represent
the empty stack. Thus we create a dummy base node, u0, labelled ($, 0) and
make this node a child of u1. Then u0 represents the empty stack and u1
represents the stack [(L0, 0)].

L0, 0$, 0 �
u1u0
�� ��� �

The stacks [(L0, 0)(R1, 0)] and [(L0, 0)(R3, 0)] can be combined with the first
stack, and are represented by u2 and u3 respectively.

L0, 0 R1, 0

R3, 0

$, 0 � �
u1 u2

u3

u0
�� ��� �
�� ��� �
�
�
�=

We can carry on in this way and build a GSS which contains all the stacks used
in the above example.

L0, 0 R1, 0 R4, 2R2, 1

R3, 0

$, 0 � �
u1 u2 u5u4

u3

u0
�� ��� � �� ��� �
�� ��� �
�

�
�=

yy

Then, for example, the elementary descriptor D8 above is written as full de-
scriptor in the form D8 = (LS3, u4, 1).

The grammar Γ1 does not illustrate the real power of a GSS because each
GSS node represents only one stack, so the total number of descriptors is not
reduced. We shall consider a further example, but first we describe the modified
push and pop stack operations that are needed to build a GSS.

A descriptor is a triple (L, s, i) where L is a label, s is a GSS node and i is an
integer. Because a GSS node can represent the top of many stacks, the action
in pop(s, i,R) is replaced by actions which add (Ls, v, i) to R for all children v
of s, where Ls is the line label in s.

A problem arises in the case when an additional child, w say, is added to a
node u after a pop statement has been executed, because the pop action also
needs to be applied to this child. To address this we use a set P which contains
pairs (u, k) for which a ‘pop’ has been executed. When a new child node w
is added to u, for all (u, k) ∈ P if (Lu, w, k) 6∈ U , where Lu is the line label
in u, then (Lu, w, k) is added to R and U . This contingent pop application is
carried out by a modification to the push function. Because this modification
is extensive we call the function create() rather than push().

Syntax analysis III – GLL parsers 87

The function create(L, u, j) creates a GSS node v = (L, j) with child u, if
one does not already exist, and returns v. If (v, k) ∈ P then add((L, u, k),R)
is called.

add((L, u, j),R) { if ((L, u, j) 6∈ U { add (L, u, j) to U and to R } }

pop(u, j,R) { if (u 6= u0) { add (u, j) to P
for each child v of u { add((Lu, v, j),R) } } }

create(L, u, j) { if there is not already a GSS node labelled (L, j) create one
let v be the GSS node labelled (L, j)
if there is not an edge from v to u {

create an edge from v to u
for all ((v, k) ∈ P) { add((L, u, k),R) } }

return v }

6.5 Example - a GLL parser

We consider the grammar Γ2

S ::= a B c | A B d
A ::= a | c
B ::= b B | ε

A GLL parser for Γ2

create GSS nodes u1 = (L0, 0), u0 = ($, 0) and an edge from u1 to u0
i := 0; s := u1; U := {(LS , u1, 0)}; R := ∅; P := ∅
goto LS

L0: if (R 6= ∅) { remove (L, s1, j) from R
s := s1; i := j; goto L }

else { if ((L0, u0,m) ∈ U) report success else report failure }

LS : if (I[i] ∈ {a}) add((LS1 , s, i), R)
if (I[i] ∈ {a, c}) add((LS2 , s, i), R)
goto L0

LS1 : if (I[i] == a) { i := i+ 1 } else goto L0

s := create(R1, s, i); goto LB
R1: if (I[i] == c) { i := i+ 1 } else goto L0

pop(s, i,R); goto L0

LS2 : s := create(R2, s, i); goto LA
R2: s := create(R3, s, i); goto LB
R3: if (I[i] == d) { i := i+ 1 } else goto L0

pop(s, i,R); goto L0

LA: if (I[i] ∈ {a}) add((LA1 , s, i), R)

Syntax analysis III – GLL parsers 88

if (I[i] ∈ {c}) add((LA2 , s, i), R)
goto L0

LA1 : if (I[i] == a) { i := i+ 1 } else goto L0

pop(s, i,R); goto L0

LA2 : if (I[i] == c) { i := i+ 1 } else goto L0

pop(s, i,R); goto L0

LB: if (I[i] ∈ {b}) add((LB1 , s, i), R)
if (I[i] ∈ {c, d}) add((LB2 , s, i), R)
goto L0

LB1 : if (I[i] == b) { i := i+ 1 } else goto L0

s := create(R4, s, i); goto LB
R4: pop(s, i,R); goto L0

LB2 : pop(s, i,R); goto L0

We execute this algorithm for Γ2 with input abbc. The final GSS will be

L0, 0 R1, 1 R4, 3R4, 2

R3, 1

R2, 0

$, 0 � �
u1 u2 u5u4

u6

u3

u0
�� ��� � �� ��� ��� �

�� ��� �
�

�
�=

� �

Q
QQk

�

I=[a,b,b,c,$] m=4 i=0 R={} s=u1 D1=(L0,u1,0) U = {D1}

goto LS I[0]=a so two descriptors are created

D2 = (LS1,u1,0) D3 = (LS2,u1,0)

goto L0 remove D2 from R s=u1 i=0

goto LS1 I[0]=a so increment i, i=1

create(R1,u1,1) s=u2

goto LB I[1]=b so one descriptor is added

D4 = (LB1,u2,1)

goto L0 remove D3 from R s=u1 i=0

goto LS2 create(R2,u1,0) s=u3

goto LA I[0]=a so one descriptor is added

D5 = (LA1,u3,0)

goto L0 remove D4 from R s=u2 i=1

goto LB1 I[1]=b so increment i, i=2

create(R4,u2,2) s=u4

goto LB I[1]=b so one descriptor is added

D6 = (LB1,u4,2)

goto L0 remove D5 from R s=u3 i=0

Syntax analysis III – GLL parsers 89

goto LA1 I[0]=a so increment i, i=1

pop u3, so one new descriptor is added

D7 = (R2,u1,1) P={(u3,1)}

goto L0 remove D6 from R s=u4 i=2

goto LB1 I[0]=b so increment i, i=3

create(R4,u4,3) s=u5

goto LB I[3]=c so one descriptor is added

D8 = (LB2,u5,3)

goto L0 remove D7 from R s=u1 i=1

goto R2 create(R3,u1,1) s=u6

goto LBI [1]=b so one descriptor is added

D9 = (LB1,u6,1)

goto L0 remove D8 from R s=u5 i=3

goto LB2 pop u5, so one new descriptor is added

D10 = (R4,u4,3) P={(u3,1), (u5,3)}

goto L0 remove D9 from R s=u6 i=1

goto LB1 I[1]=b so increment i, i=2

create(u6,R4,2) s=u4

/* a node (R4,2) already exists so a new child u6 is simply added

to u4, and two stacks recombine */

goto LB I[2]=b,

/* the descriptor (LB1,u4,2) is already in U so no action */

goto L0 remove D10 from R s=u4 i=3

goto R4 pop u4, this node has two children so two descriptors are added

D11 = (R4,u2,3) D12 = (R4,u6,3) P={(u3,1), (u5,3), (u4,3)}

goto L0 remove D11 from R s=u2 i=3

goto R4 pop u2, so one new descriptor is added

D13 = (R1,u1,3) P={(u3,1), (u5,3), (u4,3), (u2,3)}

goto L0 remove D12 from R s=u6 i=3

goto R4 pop u6, so one new descriptor is added

D14 = (R3,u1,3) P={(u3,1), (u5,3), (u4,3), (u2,3), (u6,3)}

goto L0 remove D13 from R s=u1 i=3

goto R1 I[3]=c so increment i, i=4

pop u1, so one new descriptor is added

D15 = (L0,u0,4) P={(u3,1), (u5,3), (u4,3), (u2,3), (u6,3), (u1,4)}

goto L0 remove D14 from R s=u1 i=3

goto R3 I[3]=c so no action

goto L0 remove D15 from R s=u0 i=4

goto L0 R is empty, (L0,u0,4) is in U, report success

6.6 Formal templates for generating GLL parsers

Like a recursive descent parser, a GLL parser follows the grammar closely, and
can be generated by writing a line of code for each grammar symbol instance.
In this section we give templates for writing these lines of code.

We present simple versions of the templates. However, it is easy to make
a GLL parser more efficient by extending the templates to remove some tests,

Syntax analysis III – GLL parsers 90

to add some tests before calls to pop() and create(), and to run in recursive
descent mode when a nonterminal is LL(1). To keep the templates simple we
do not do any of these in this course.

We also note that it is possible, although not trivial, to extend the GLL
approach so that the algorithms produce derivation trees, and so that it can
be applied directly to EBNF grammars. The main issue that needs to be
addressed for derivation tree generation is that for ambiguous grammars there
will be more than one derivation tree, so an efficient way of representing all the
trees is required. For EBNF the tricky part is dealing with [x] and {x} in the
cases where x

∗⇒ε.
Finally we note that when a nonterminal, A, is encountered in a GLL parser

we need to test each of its alternates, α, against the current input symbol, a.
Essentially we need to check that that a is in first(α), but this is not quite
enough when α derives ε. Thus we define the set select(α,A), which is used
in the templates.

select(α,A) =

{
(first(α)\{ε}) ∪ follow(A) if ε ∈ first(α)
first(α) if ε 6∈ first(α)

We now give the templates for generating a GLL parser (recogniser) from a
BNF grammar.

Each nonterminal instance on the right hand sides of the grammar rules is given
an instance number. We write Ak to indicate the kth instance of nonterminal A.
Each alternate of the grammar rule for a nonterminal is also given an instance
number. We write A ::= αk to indicate the kth alternate of the grammar rule
for A.

The templates use the following globally defined identifiers:

m is a constant integer whose value is the length of the input
I is a constant integer array of size m+ 1 containing the input
i is an integer
GSS is a digraph whose nodes are labelled with elements of the form
(L, j)
s is a GSS node
P is a set of GSS node and integer pairs
R is a set of descriptors

For a terminal a we define

code(a) = if(I[i] == a) { i := i+ 1 } else { goto L0 }

For a nonterminal instance Ak, where B ::= αAβ say, we define

code(Ak) = s := create(RAk
, s, i); goto LA

RAk
:

For each production A ::= αk we define code(A ::= αk) as follows. Let αk =
x1x2 . . . xf , where each xp, 1 ≤ p ≤ f , is either a terminal or a nonterminal

Syntax analysis III – GLL parsers 91

instance of the form Xl. We also allow f = 0 so we can have αk = ε. Then we
define

code(A ::= αk) = code(x1)
code(x2)
. . .
code(xf)
pop(s, i,R); goto L0

For the grammar rule A ::= α1 | . . . | αt. we define code(A) as follows.

code(A) = if(I[i] ∈ select(α1, A)) add((LA1 , s, i),R)
. . .
if(I[i] ∈ select(αt, A)) add((LAt , s, i),R)
goto L0

LA1 : code(A ::= α1)
. . .

LAt : code(A ::= αt)

Then, supposing that the nonterminals of the grammar Γ are A, . . . ,X, the
GLL recognition algorithm for Γ has the form:

read the input into I and set I[m] := $
create GSS nodes u1 = (L0, 0), u0 = ($, 0) and an edge from u1 to u0
i = 0; s := u1; R := ∅; U := {(LS , u1, 0)}; P := ∅
goto LS

L0: if R 6= ∅ {
remove a descriptor, (L, u, j) say, from R
s := u, i := j, goto L }

else if ((L0, u0,m) ∈ U) { report success } else { report failure }

LA: code(A)
. . .

LX : code(X)

Semantic evaluation 92

7 Semantic evaluation

We now start to consider the synthesis of the object code. We need to gener-
ate code corresponding to the intended meaning of the source program. The
writer of a language must also provide the semantics. This is usually done with
reference to the grammar of the language. The semantic analyser then uses
the information provided to construct code, often in an intermediate language.
Because the semantics are usually defined with reference to the grammar, the
semantic analyzer is designed to build on the work of the parser.

The techniques for semantic analysis are not as well developed as those for
parsing. There is no general algorithmic method for defining the semantics of
a language. (In fact this is usually done by describing properties using the
English language.) We will look briefly at the two techniques, syntax directed
translation and top down translation, using as examples simple semantics that
can be specified in a precise way, e.g. basic mathematical operations and types
of things such as real or integer numbers.

7.1 Tokens and attributes

The lexical analyser returns a stream of tokens to the parser, but these tokens
originally had more attached information. For tokens whose pattern contains
more than one string there is the lexeme which was found when the token was
matched. This lexeme is not lost; it is usually stored in the symbol table and
it can be retrieved by the semantic analyser.

We shall write <token, lexeme> to show that the token token was returned
because the lexeme lexeme was scanned. For example, < ID, fred1> is the token
ID which was returned when the identifier fred1 was scanned. We shall also
use token.lexeme to refer to the lexeme attached to the particular instance of
that token. So the statements ‘ID such that ID.lexeme=fred1’ is equivalent to
the statement <ID, fred1>.

Tokens can have other properties. For example, if the token is an identifier
or a number it may have an associated type. It may also have a value (which
is different in different parts of the code).

We call properties of grammar symbols attributes. An attribute can be any
property; for example a value, a lexeme, or a pointer to a place in a symbol
table.

We attach attributes to non-terminals as well as tokens. The idea is to attach
the attributes in such a way that the parse tree can be ‘walked’, evaluating the
attributes at each node, so that the output can be fed into the back end of the
compiler. For example, the output can be intermediate code (see next section)
or it may be the actual result of ‘running’ the input program.

7.2 Annotated parse trees

We assign a set of semantic rules to each production rule of the grammar. The
purpose of the semantic rules is to tell the semantic analyser how to evaluate

Semantic evaluation 93

the attribute of a node in the parse tree from those attributes it has already
calculated.

For example, the following grammar generates arithmetic expressions. NUM

is a token whose pattern is the decimal numbers. The corresponding semantic
rules define the value of the left hand side of a rule in terms of the values of its
right hand side.

Grammar Rules Semantic Rules

L ::= E ; { L.val = E.val; printf(L.val)}

E ::= E1 + T { E.val = E1.val + T.val}

E ::= T { E.val = T.val}

T ::= T1 * F { T.val = T1.val * F.val}

T ::= F { T.val = F.val}

F ::= NUM { F.val = NUM.lexeme}

The attribute NUM.lexeme is the value of the particular token NUM which has
been passed on by the lexical analyser. Each of the elements T.val, E.val etc,
are attributes for T, E, etc.

We have had to be careful here. Where there were two occurrences of the
same grammar symbol in a production we have had to give them distinguishing
names so that we can tell when we apply the rule which expression is supposed
to denote the attribute required. For example, the E1.val on the RHS of E.val
:= E1.val + T.val is the E.val arising from the actual instance of the RHS
of the production used, the E.val on the left is the one that arises from the
actual instance of E on the LHS.

L {L.val =E.val, printf(L.val)}

/ \

E ;

{E.val=E1.val + T.val}

/ | \

E1 + T

{E1.val=T1.val} {T.val=F.val}

| |

T1 F

{T1.val=F1.val} {F.val=NUM.lexeme}

| |

F1 <NUM, 7>

{F1.val=NUM.lexeme}

|

<NUM, 89>

If the attributes are evaluated in turn, the value of the root node will be
the value of the input expression. So in this case we can use the parse tree to
actually execute the input program.

A parse tree that shows the attributes at each node is called an annotated
parse tree.

Semantic evaluation 94

7.3 Syntax directed translation

In a syntax directed translator the parser constructs an annotated parse tree
and then the semantic analyzer walks the tree, evaluating attributes at each
node.

We cannot evaluate a node until we have evaluated the attributes needed.
For example, each of the attributes F.val, T.val, etc., in the above example,
is defined in terms of the previous one. The rules effectively say ‘make the
attribute for T whatever this attribute for F is’ or ‘make T.val the product of
S.val and F.val’ etc. Thus we cannot evaluate T.val until we have evaluated
the appropriate F.val.

The methods that we can use to walk an annotated tree are determined
by properties of the semantic rules. There are two common types of attribute,
synthesized attributes and inherited attributes. An attribute is inherited
it is determined by looking only at the attributes of its parent and siblings in
the tree.

If all of the attributes are synthesized, an attribute can be determined by
looking at the attributes of its children in the parse tree and we can perform
semantic analysis by starting with the attributes of the programming construct
being considered, i.e. the string of tokens that are the leaves of the complete
parse tree, and working up the parse tree constructing attributes as we go, using
the rules associated with the relevant productions. Finally we end at the top
of the tree with the semantic value of the whole input string.

7.4 Attribute grammars

Formally, an attribute grammar is a grammar in which each symbol has
an associated set (possibly empty) of synthesized and inherited attributes and
each production A ::= γ has an associated set of semantic rules of the form
b = f(c1, . . . , ck) where either

1. b is a synthesized attribute of A and c1, . . . , ck are attributes of A and the
symbols that make up γ, or

2. b is an inherited attribute of a symbol in γ and c1, . . . , ck are attributes
of A and the symbols that make up γ.

Example
We can use inherited attributes to express the dependence of a token on the
context in which it appears. For example, consider a language which has in-
tegers and reals. Suppose also that the programming language allows us to
declare various identifiers to be real or integer. This could be done with a pro-
gramming construct of the form real x1, ... , xn whose intended meaning
is that the identifiers x1, ... , xn have real values.

Semantic evaluation 95

Grammar Rules Semantic Rules

D ::= TL. {L.type = T.type}

T ::= "int". {T.type = "int"}

T ::= "real". {T.type = "real"}

L ::= L1 , ID. {L1.type = L.type, addtype(ID, L.type)}

L ::= ID. {addtype(ID, L.type)}

For the 4th production there are two semantic rules, the first is to make L.type
for the L on the right equal to the L.type for the L on the left, the second
is an instruction that calls a procedure addtype, whose function is to add the
information in its second argument to the entry in the symbol table in which
the type of the first argument is stored.

The non-terminal D has no attributes, L has one which is inherited, T
has one attribute which is synthesized and we can view the rule addtype() as
defining a dummy inherited attribute of ID. The tokens ‘integer’ and ‘real’ are
viewed as being constant properties of attributes, or nullary functions. (Strictly
speaking this is a syntax-directed definition, it updates the symbol table as a
side effect.)

Certain types of inherited attributes can be evaluated on the way down on
a depth first walk of the parse tree. Synthesized attributes can be evaluated on
the walk back up during such a tree walk.

For example, the following annotated parse tree can be produced from the
string "int" ID, ID, ID

D

/ \

T L

{T.type="int"} {L.type=T.type}

| / | \

"int" L1 , ID

{L1.type=L.type} {addtype(ID, L.type)}

/ | \

L2 , ID

{L2.type=L1.type} {addtype(ID, L1.type)}

|

ID

{addtype(ID, L2.type)}

An attribute grammar is called S-attribute if it only has synthesized at-
tributes. The semantic analysis of S-attribute grammars is easy to carry out,
one just begins with the left-most available branch of the tree and works up-
wards.

An attribute grammar is called L-attribute if, for each production
A ::= x1 . . . xn, an inherited attribute of xi depends only on the attributes
of x1, . . . , xi−1 and the inherited attributes of A.

Semantic evaluation 96

If we have an L-attribute grammar, a syntax directed translator can walk an
annotated parse tree using a top down depth first walk, evaluating the inherited
attributes on the way down and the synthesized attributes on the way back up.

Furthermore, if we have an L-attribute grammar it is possible to evaluate
the attributes while the parse tree is being constructed, if the parsing technique
is top down, depth first.

7.5 Top down translation

We now consider top-down parsing with concurrent semantic evaluation.
A translation scheme is a context-free grammar in which attributes are

associated with grammar symbols and semantic actions have been inserted in
the RHS of productions. The actions are enclosed within braces. We can think
of a translation scheme as a grammar by thinking of the actions as special
tokens.

A top down translator has a grammar and a corresponding translation
scheme. It parses input strings using a top down left-most depth first search,
evaluating the semantic rules in the translation scheme as the parse is carried
out.
Example
Suppose the source language is the set of arithmetic expressions that are sums
and products of integers grouped together using parentheses. We define a token
INT whose pattern is the set of strings of digits.

Suppose that the object language is the polish notation for arithmetic ex-
pressions. When a string is input the compiler has to check that it is a string
in the source language and produce a string in the object language with the
same meaning, in this case the equivalent expression in polish notation. We
add actions to the grammar to get a translation scheme that determines the
semantics. The actions in this case can be written so that they produce the
output code.

Translation Scheme

E ::= E+T {printf(+)} | T.

T ::= T*F {printf(*)} | F.

F ::= (E) | NUM {printf(NUM.lexeme)}.

Here NUM.lexeme is the lexeme of the particular instance of the token NUM, which
has been stored in the attribute table by the lexical analyser.

On input of the string (7+8)∗3 the lexical analyser produces the string
(<NUM,7>+<NUM,8)>)*<NUM,3>. If the parser is top down depth-first left-most
it then produces, using the translation scheme, the derivation:

E ⇒ T ⇒ T ∗ F{printf(∗)}
∗⇒ (E) ∗ F{printf(∗)}
∗⇒ (NUM{printf(NUM.lexeme)}+NUM{printf(NUM.lexeme)}

Semantic evaluation 97

{printf(+)}) ∗NUM{printf(NUM.lexeme)}{printf(∗)}.

The ‘intermediate code’ is

printf(7)

printf(8)

printf(+)

printf(3)

printf(*)

A simple translator can then be run to read this output and carry out the print
actions. The final output of the compiler is then 7 8 + 3 ∗.

Since actions can be procedure calls it is possible to generate a wide variety
of types of intermediate code using translation schemes.

7.6 Types

It is common practice to ‘overload’ operations. Strictly speaking an operation
comes with a specified range and domain. However, it is usual to use the same
notation for two operations with different ranges and domains if the operations
are somehow ‘the same’. For example addition of integers takes a pair of integers
and returns another integer, while addition of matrices takes two matrices and
returns another. We usually denote both these operations by the symbol +.

We can use typing to deal with overloaded operations, we provide rules that
say, for example, if n and m are integers then the ‘+’ in n + m is addition
of integers and the result is to have type integer, etc. But we cannot have
n + M, where M is a 3×3 matrix! The general idea is to assign types to
grammar symbols, some symbols have predetermined types, the types of others
are inferred from type constructors, which are just rules for inferring types.

The rules for inferring types can be written as translation schemes. In
section 7.4 is an example of a translation scheme which allows us to infer the
types of a list of numbers from a declaration.

Suppose that we have a language in which we can write integer and real
identifiers, and pointers to integers, and a function val that returns the value
of the identifier pointed to by the pointer. So val has as its domain the set
of pointers to integers and as its range the set of integers. Thus it only makes
sense to apply val to identifiers of type ‘pointer’ but this can’t easily be specified
syntactically. We use attributes to assign the appropriate types and check at
the semantic analysis stage that val is used correctly. We use the following
translation scheme.

E ::= ID {E.type = lookuptype(ID)}

E ::= val(E1) {E.type = if (E1.type=="intPtr") return "int"

else type_error()}

E ::= E1 + E2 {E.type =

if(E1.type=="int" & E2.type=="int") return "int"

else

Semantic evaluation 98

if (E1.type =="real" & E2.type=="real")

return "real"

else type_error()}

During the lexical analysis tokens ID, val, +, (and) are created. Using a
function type_error() that runs a suitable error reporting procedure and a
function lookuptype() that finds the type of its argument by consulting the
symbol table, we can write a translation scheme that checks that val and ‘+’
are being used correctly, i.e. applied to the right sorts of objects.

The compiler accepts (makes no comment on) a statement of the form ID

+ val(ID) if first ID has type “int” and the second ID has type “intPtr”, but
it reports a type error if it meets the statement ID + ID if one ID is of type
“int” and the other is of type “intPtr”, or if it meets the statement val(ID)

where ID has type “int”.

7.7 Semantic actions in rdp

In this section we consider the design of interpreters for a tiny language called
mini. The language includes variable declaration, assignment, the four basic
arithmetic operators and a print procedure that can output a mix of variables
and strings, much like the Pascal writeln statement.

7.7.1 Adding interpreter semantics

The grammar of Figure 11 from Chapter 4 can be used to produce a syntax
checker for mini that parses mini code but does not actually execute a mini

program. In this section, the grammar will be decorated with attributes and se-
mantic actions that describe a usable interpreter for mini. The fully annotated
grammar is shown in Figure 14.

The two mini grammars differ in only three respects. The

1. the decorated grammar has a SYMBOL_TABLE declaration,

2. attributes (denoted by a colon and an identifier) have been appended to
some names and

3. C-language fragments delimited by [* ... *] brackets describing the
interpreter semantics have been inserted in some productions.

7.7.2 Symbol table manipulation

Symbol table manipulation is fundamental to the operation of most language
translators. rdp provides a SYMBOL_TABLE directive that provides an interface
to the symbol module in the support library. The directive creates a named
table with a specified size and hash key. You must also specify compare, hash
and print functions and the user data to be stored in each record. The symbol
table module in rdp_supp provides routines such as

Semantic evaluation 99

TITLE("Mini V1.50 (c) Adrian Johnstone 1997")

SUFFIX("m")

SYMBOL_TABLE(mini 101 31

symbol_compare_string

symbol_hash_string

symbol_print_string

[* char* id; integer i; *]

)

program ::= {[var_dec | statement] ’;’ }.

var_dec ::= ’int’ (ID:name [’=’ e1:val]

[* mini_cast(symbol_insert_key

(mini, &name, sizeof(char*), sizeof(mini_data)))->i = val; *]

)@’,’.

statement ::= ID:name

[* if (symbol_lookup_key(mini, &name, NULL) == NULL) {

text_message(TEXT_ERROR, "Undeclared variable ’%s’\n", name);

symbol_insert_key(mini, &name, sizeof(char*), sizeof(mini_data));

}

*]

’=’ e1:val

[* mini_cast(symbol_lookup_key(mini, &name, NULL))->i = val; *] |

’print’ ’(’ (e1:val [* printf("%li", val); *] |

String:str [* printf("%s", str); *]

)@’,’

’)’.

e1:integer ::= e2:result {’+’ e2:right [* result += right; *] |

’-’ e2:right [* result -= right; *] }.

e2:integer ::= e3:result {’*’ e3:right [* result *= right; *] |

’/’ e3:right [* result /= right; *] }.

e3:integer ::= ’+’ e4:result |

’-’ e4:result [* result = -result; *] |

e4:result.

e4:integer ::= ID:name

[* if (symbol_lookup_key(mini, &name, NULL) == NULL) {

text_message(TEXT_ERROR, "Undeclared variable ’%s’\n", name);

symbol_insert_key(mini, &name, sizeof(char*), sizeof(mini_data));

}

*]

[* result = mini_cast(symbol_lookup_key(mini, &name, NULL))->i; *] |

INTEGER:result |

’(’ e1:result ’)’.

comment ::= COMMENT_NEST(’(*’ ’*)’).

String: char * ::= STRING_ESC(’"’ ’\\’):result.

Figure 14 The mini grammar decorated with interpreter semantics

Semantic evaluation 100

� symbol_lookup_key() which returns a pointer to the symbol table record
for an identifier and

� symbol_insert_key() which creates a new symbol table record contain-
ing an identifier string with space for user data.

These routines both return void pointers, and so rdp automatically creates a
macro called name_cast() (where name is the symbol table name) which casts
a void pointer to a pointer to the user data type.

7.7.3 Attributes

Each rdp parser production can return zero or one synthesized attributes which
can be any C-language datatype including a struct. By using structs, multi-
ple values may be returned by a production. A production that does not return
an attribute is called a void production. rdp also provides inherited attributes
which may be passed down into productions like parameters. A extension of
mini uses inherited attributes to implement an if . . . then . . . else state-
ment.

In the mini grammar, all productions are void except for e1, e2, e3, e4

and string. These productions are used to evaluate simple expressions and to
parse strings for use in the print statement.

Most built-in primitives also return a value. The ID primitive returns the
identifier’s name as a character string and the INTEGER primitive returns the
numeric value of the integer parsed.

Within the body of a production, synthesized attributes are named as return
values (specified by a colon and an attribute name after the production call).
Local variables are automatically declared in the equivalent C parser function
to receive the attribute values. In addition, in a non-void production a variable
called result is automatically declared to receive the return value. The same
restrictions apply to attribute names as exist for production names: they must
not contain two consecutive underscores and must not conflict with C reserved
words or library function names.

7.7.4 Semantic actions

Semantic actions may be inserted anywhere in the production and they may
make use of attributes or explicitly declared variables. The expression analyser
productions illustrate this best: the production for multiply and divide is

e2:integer ::= e3:result {’*’ e3:right [* result *= right; *] |

’/’ e3:right [* result /= right; *] }.

As the expression is parsed, the left hand operand is evaluated and stored
in variable result, the multiply or divide operator is parsed and then the
right hand operand similarly evaluated into the attribute variable right. The
semantic actions then update the result variable by multiplying (or dividing)
in the right hand operand.

Semantic evaluation 101

Recursive descent parser generator V1.50 (c) Adrian Johnstone 1997

Generated on Jan 09 1998 13:12:35 and compiled on Jan 9 1998 at 12:58:16

******: Checking for continuation tokens

******: No continuation tokens needed

******: Checking for empty alternates

******: Warning - rule ’comment’ never called so deleted

******: 9 rules, 14 tokens, 0 actions, 36 subrules

******: Generating first sets

******: Generating follow sets

******: Follow sets stabilised after 9 passes

******: Checking for clashes with reserved words

******: Checking for disjoint first sets

******: Checking for nested nullable subrules

******: Checking nullable rules

******: Updating follow sets

******: Follow sets stabilised after 3 passes

******: Dumping header file to ’mini.h’

******: Dumping parser file to ’mini.c’

******: Text buffer size 34000 bytes with 29640 bytes free

******: 0 errors and 1 warning

******: 0.069 CPU seconds used

Figure 15 Output of rdp -v -omini minicalc

7.7.5 Generating and running the interpreter

A copy of the mini grammar is supplied in the standard distribution. The C
language parser source file is generated with the following command

rdp -v -omini minicalc

The -v flag sets verbose mode which causes rdp to generate statistics and in-
formational messages. A log of such an rdp run is shown in Figure 15.

The warning message about production comment is expected. This produc-
tion is a dummy used only to set up the COMMENT delimiters. Since comment is
never called from anywhere else in the grammar it need not be instantiated into
the C parser source file, indeed if it were it would probably generate a warning
message from the C compiler. rdp automatically deletes productions that are
never called.

The mini interpreter evaluates expressions and executes print statements.
Figure 16 shows the result of running mini on testcalc.m with the scanner
listing switched on with a -l option.

Semantic evaluation 102

Mini V1.50 (c) Adrian Johnstone 1997

Generated on Jan 09 1998 18:23:30 and compiled on Jan 9 1998 at 18:23:23

******:

1: (**

2: *

3: * RDP release 1.50 by Adrian Johnstone (A.Johnstone@rhbnc.ac.uk) 16 August 1997

4: *

5: * test.m - a piece of Mini source to test the Mini interpreter

6: *

7: * This file may be freely distributed. Please mail improvements to the author.

8: *

9: **)

10:

11: int a=3+4, b=1;

12:

a is 7

13: print("a is ", a, "\n");

14:

15: b=a*2;

16:

b is 14, -b is -14

17: print("b is ", b, ", -b is ", -b, "\n");

18:

19: int z = a;

7

20: print(z, "\n");

21:

22: (* End of test.m *)

23:

******: 0 errors and 0 warnings

******: 0.153978 CPU seconds used

Figure 16 Output of mini -l -v testcalc.m

Intermediate Code 103

8 Intermediate Code

Intermediate code is usually written in a low level language whose constructs
are thought of as being basic operations on a hypothetical machine. The idea is
that the code is independent of the particular target machine but is sufficiently
like machine code that the translation into the target code is simple and direct.
In this section we use semantic rules to generate three address code, a form of
intermediate code. But first we consider a more compact form of parse tree.

8.1 Abstract parse trees

Most derivation trees contain more information than we need.

S,1

/ | \

S,2 + S,3

| / | \

a S,4 * S,5

| |

b c

We only need the structure of the input, not the way in which that structure
was established. The tree below has enough information to evaluate the input.

+

/ \

a *

/ \

b c

The value of the node labelled * is the value of b times the value of c. The value
of the node labelled +, and hence the value of the whole input, is the value of
a plus the value of the node labelled *.

We construct a reduced version of a derivation tree starting at the root and
working down. If a node has more than one child then label the node with
appropriate tokens (usually some of those which appear in the right hand side
of the associated production rule) and remove the children which are token
nodes from the tree. If the node has only one child, merge the parent and child
node, labelling the merged node with the label of the child.

S +

/ | \ / \

S + E a *

| / | \ / \

E E * T b c

| | |

T T c

| |

a b

Intermediate Code 104

A tree constructed in this way is called an abstract parse tree.
Some of the tokens may be just ‘syntactic sugar’ in the sense that once the

derivation tree is constructed they are no longer needed.

S ::= E ;

E ::= T+E | T

T ::= F*T | F

F ::= (E) | a | b | c

(a+b)*c

S S *

| \ | / \

E ; E + c

| | / \

T T a b

/ | \ / | \

F * T F * T

/ | \ | | |

(E) F E F

/ | \ | / | \ |

T + E c T + E c

| | | |

F T F T

| | | |

a F a F

| |

b b

The grammar writer can tell in advance which tokens are not necessary for
semantic evaluation. In rdp it is possible to specify a ‘promotion’ operator
which suppresses the building of such nodes by the parser. A single operator ^
causes the node for the corresponding symbol to be placed ‘under’ it’s parent
node in the derivation tree. A double operator ^^ causes the node for the
corresponding symbol to be placed ‘over’ it’s parent node in the derivation
tree.

S ::= E^^ ;^ .

E ::= T [+^^ E]:^^ .

T ::= F [*^^ T]:^^ .

F ::= (^ E^^)^ | a^^ | b^^ | c^^ .

In rdp we specify ε using [] brackets. To attach promotion operators to ε
we use a colon at the end of the brackets. So [..]:^^ means place the node
for ε over its parent node. The tree produced by the above grammar on input
a ∗ (b+ c) + a; is shown on the right below. rdp runs a post parse routine that
removes the ε nodes to get the tree on the left below.

Intermediate Code 105

TREE EPSILON_TREE

+ +

/ \ / \

* a *

/ \ / \ |

a + a

/ \ | |

b c + a

/ \

| |

b

|

c

To see the tree without the ε nodes removed use the EPSILON TREE directive
in rdp instead of the TREE directive.

It is often possible to ‘evaluate’ the input from its abstract parse tree by
creating simple code. Each interior node is assigned a temporary variable which
carries the value of the subtree below it. A relatively simple assembler can then
be written to evaluate the assignment expressions.

* t1 t2 := a + b

/ \ t1 := t2 * c

t2 + c

/ \

a b

(It is traditional to use the Pascal style assignment symbol in the statements
produced.)

What we are actually doing here is evaluating attributes according to fairly
obvious semantic rules. This idea is the basis of a standard method of generating
a form of intermediate code called three address code.

8.2 Three address code

Three address code is a sequence of statements of the form

x := y op z,

where x,y,z are names either from the symbol table or temporary names gen-
erated by the compiler that behave like names from the symbol table, and op

is an operator that takes two arguments. We allow some of the elements to be
missing, for example the statements may be of the form

x := y, or x := - z,

but we cannot have statements like

x := y + z * w or y + z * w.

Intermediate Code 106

The name three address code comes from the fact that each basic operation
in the language usually requires three addresses, two for the operands and one
for the result.

The statements are viewed as instructions for a hypothetical machine that
has a set of addresses and hard-wired operations corresponding to each op-
eration in the set of statements. The machine is expected to carry out the
instructions in the order that it reads them.

x := y op z is viewed as being the instruction ‘perform the operation op on
the contents of addresses y and z and store the result at address x’.

x:=y is thought of as assigning the value of y to x, i.e. copy the value at
address y to address x.

x:= op y is thought of as performing the unary operation op, e.g. negation,
conversion to floating point number, etc. on y and storing the result in x.

In addition to these operation instructions a three address code will also
have some ‘control of flow statements’ such as

goto L and if t goto L.

goto L – carry out the instruction labeled L next and then continue from there
working through the instructions.

if t goto L – t is a boolean expression such as x < y, which evaluates to true
or false. If the value is true move to the instruction labeled L and carry on,
otherwise proceed to the next instruction.

There may be more complicated assignment statements like

x := y[i],

corresponding to the instruction to read into x the value in the address that is
i beyond the address y.

For a given source language the choice of statements allowed in the three
address code is an important part of the compiler design. The more types of
statement the more flexible the code and the easier the writing of the translator,
but the more difficult to generate the final target code. The above examples
are typical of the types of statement normally used, but should not be seen as
the only possibilities.

8.2.1 Generating three address code

We generate three address code by ascribing semantic rules to productions.
We need several different types of attribute. One attribute x.place will be a
symbolic identifier representing the address at which the value of x is stored.
If x is a token of type ID or num then we shall take the lexeme of x to be
x.place. If x is a non-terminal then we shall generate a new temporary name
to be x.place.

If x is the token ID or num we assume that x.place has been passed on by
the lexical analyser. Since x.place is a new name when x is a non-terminal

Intermediate Code 107

there must also be a procedure that returns new temporary names as they are
needed. We shall assume that the procedure newtemp does this.

The attributes x.code are intended to be the portion of three address code
so far produced. At the end of the translation S.code, where S is the start
symbol, will contain the complete three address version of the code.

Suppose that our source language allows constructions of the form a = e,
where a is an identifier, e is an arithmetic expression involving sums and prod-
ucts of numbers and identifiers and whose intended meaning is that a should
contain the result of evaluating the expression e. The grammar contains the
following productions:

S ::= ID = E S.code = E.code

ID.place ‘:=’ E.place

E ::= E1 + E2 E.place = newtemp

E.code = E1.code

E2.code

E.place ‘:=’ E1.place ‘+’ E2.place

E ::= E1 * E2 E.place = newtemp

E.code = E1.code

E2.code

E.place ‘:=’ E1.place ‘*’ E2.place

E ::= (E1) E.place = E1.place

E.code = E1.code

E ::= ID E.place = ID.place

E.code =‘ ’

E ::= num E.place = num.place

E.code = ‘ ’

When a construct S of this sort has been parsed the corresponding inter-
mediate three address code will be contained in the attribute S.code.
Example:

price = tax + (3 * cost) S

ID = ID + (num * ID) / | \

ID = E1

/ | \

E2 + E3

| / | \

ID (E4)

/ | \

E5 * E6

| |

num ID

Intermediate Code 108

E6.code := ’ ’ S.code := t1 := 3 * cost

E5.code := ’ ’ t2 := tax + t1

E4.code := t1 := 3 * cost price := t2

E3.code := t1 := 3 * cost

E2.code := ‘ ’

E1.code := t1 := 3 * cost

t2 := tax + t1

(Here ‘ ’ passes nothing.)

8.2.2 Flow of control statements

We need to have more machinery to cope with flow-of-control statements. For
example, an instruction of the form ‘if B then S’ has the intended meaning that
if B is true then the procedure S should be carried out, otherwise proceed to
the next instruction. We specify the syntax of such statements by including
the production S ::= if B then S in the grammar. If B is a simple Boolean
expression of the form x relop y, where relop is a relational operator such
as < then such statements can be implemented in three address code using
labels. We assume that we have three address code, B.code, that places the
value 1 in the address B.place if B holds and places 0 there otherwise. We
also assume that we have already generated the three address code, S1.code,
corresponding to the S on the RHS of the production, that there are two label
attributes, S.true and S.false, associated with S, and that there is some
procedure newlabel which returns a new label name each time it is called.

The semantic rules associated with the production S ::= if B then S1

are:

S.code = B.code

’if’ B.place ’goto’ S.true

’goto’ S.false

S.true : S1.code

S.false:

Here S.false labels the empty statement. When this statement is encountered
the program execution simply moves on to the next step.

Sequences of statements and sequences surrounded by Begin/End state-
ments are integrated directly into three address intermediate code, because the
flow of control is specified directly.

S ::= S1 , S2 S.code = S1.code

S2.code

S ::= begin S1 end S.code = S1.code

An instruction of the form ‘while B do S’ has the intended meaning that
while B holds the procedure S should be carried out. What semantic rules
should be associated with the production S ::= while B do S? We generate
the three address code, S1.code, corresponding to the S on the RHS of the

Intermediate Code 109

production. We need two label attributes, S.begin and S.after, to mark the
beginning and end of the while loop S.

Then the semantic rules associated with the production S ::= while B do

S1 are:

S.begin = newlabel

S.after = newlabel

S.false = newtemp

S.code = S.begin : B.code

S.false := B.place ‘=’ 0

’if’ S.false ’goto’ S.after

S1.code

’goto’ S.begin

S.after :

We can extend the three address code operators to include an ifn operator.
We define ifn t goto L as: if t is false move to the instruction labeled L and
carry on, otherwise proceed to the next instruction. This allows an alternative
attribute rule for a while statement which does not require a new temporary
variable.

S.begin = newlabel

S.after = newlabel

S.code = S.begin : B.code

’ifn’ B.place ’goto’ S.after

S1.code

’goto’ S.begin

S.after :

8.2.3 Example 1

The following ‘program’ adds the numbers 1×2, 2×3, ... , (n–1)×n to-
gether and calls the result sum:

x = 1 , z = 0 ,

while x < n do

begin

z = z+x*(x+1), x = x + 1

end ,

sum = z

We assume that the lexical analyser produces:

ID = num , ID = num , while ID < num do

begin ID = ID + ID * (ID + num), ID = ID + num end , ID = ID

We also suppose that the source language grammar contains the productions:

S ::= S , S | begin S end | ID = E | while B do S

B ::= ID < E

Intermediate Code 110

E ::= T+E | T

T ::= F*T | F

F ::= ID | num

The first and the last three production rules are a subset of the productions
discussed above, and we have seen how to assign semantic rules to get three
address code from these. We will use the if version of the while semantics.
To determine semantic rules for the production B ::= ID < E the code B.code

generated from B must assign true to B.place if B is true and false to B.place
otherwise.

B.place = newtemp

B.code = E.code

B.place ’:=’ ID.place ’<’ E.place

The semantic rules for the production E ::= T are

E.place = T.place

E.code = T.code

Using the rules to calculate the three address code for

z = z + x * (x+1) and for x = x + 1 gives

S1.code = t4 := x + 1

t3 := x * t4

t2 := z + t3

z := t2

t5 := x + 1

x := t5

Then the full three address code version of the source program is:

x := 1

z := 0

L1 : t1 := x < n

t6 := t1=0

if t6 goto L2

t4 := x + 1

t3 := x * t4

t2 := z + t3

z := t2

t5 := x + 1

x := t5

goto L1

L2 :

sum := z

Intermediate Code 111

8.2.4 Arrays in three address code

We assume that the entries in the array are stored in consecutive addresses.
We shall denote by base the first address of section allocated to the array and
we shall assume that the width of the array elements is w, so each entry in the
array is w addresses long, the first address is assumed to contain the value of
the element. We take the elements of the array and write them in a list.

To write the code we need to know the way in which the list has been formed
from A. If A is a 1× n or n× 1 array, i.e. a list, then we use the natural order,
A : a1, a2, . . . , an. For an n×m array there are two standard ways, row-major
and column-major.

Row-major : A[1,1] Column-major : A[1,1]

A[1,2] A[2,1]

. .

A[1,m] A[n,1]

. .

A[n,m] A[n,m]

For a 1-dimensional array the ith entry A[i] begins at the address base +
(i–1)×w. Note that base – w = c is a constant. The code

t1 := i * w

c := base - w

t2 := c[t1]

stores the value A[i] at the address t2.
For an n ×m array A stored in row-major form, the entry A[i,j] begins at

address base + ((i–1)×m + j – 1)×w. Then c = base –(m + 1)×w is a
constant and the code

t1 := i * w

t2 := t1 * m

t3 := j * w

t4 := t2 + t3

t5 := m + 1

t6 := t5 * w

c := base - t6

t7 := c[t4]

stores the value A[i,j] at the address t7.

8.2.5 Example 2

Suppose that A and B are real vectors of length 10, so they are 1×10 dimensional
arrays. Suppose also that each entry in the array has two attributes, its value
and its type. So w = 2. The following three address code forms the scalar
product of A and B and stores the result at the address prod.

Intermediate Code 112

prod := 0

i := 1

L : t1 := i * 2

c_A := base_A - 2

t2 := c_A[t1]

t3 := i * 2

c_B := base_B - 2

t4 := c_B[t3]

t5 := t2 * t4

t6 := prod + t5

prod := t6

t7 := i+1

i := t7

t8 := i < 11

if t8 goto L

We can see by inspection that the codes in the two examples are not very
efficient! We shall consider this issue in Section 9.

Code improvement 113

9 Code improvement

It is not possible to write a routine that will always generate the most optimal
code for any input. The main aim of the optimization phase is to try to improve
loops and procedure calls. All changes must be safe, i.e. must definitely not
change the semantics of the program, so they tend to be conservative. We shall
concentrate on optimization of three address code.

9.1 Basic blocks

What we do is to divide the code into self contained sections called basic blocks.
Basic blocks will be defined so that the end result of executing the code in a
block is to assign values to names. The idea is that we can change the code
within a basic block any way that we like so long as the end result is still that
the same values are assigned to the same names. Such optimization will be safe.
The goto statements by which we get into and out of blocks can be thought of
as joining the blocks together, creating the flow of the program.

Let P be a sequence of three address statements. A statement in P is a
leader if it is either:

1. the first statement of P,

2. the statement labelled L (or the statement after if this is empty) where
there is a statement ‘goto L’ or ‘if x relop y goto L’,

3. the next statement following a (conditional or unconditional) goto state-
ment in P.

The basic block of a leader in the three address code P is the sequence of
statements which begins with the leader and includes everything up to (but
excluding) the next leader.

For Example 1 in Section 8:

LEADERS:

x := 1 by (1) x := 1

t1 := x<n by (2) z := 0

sum := z by (2) or (3) -----------------

t4 := x + 1 by (3) L1: t1 := x < n

t6 := t1 = 0

if t6 goto L2

t4 := x + 1

t3 := x * t4

t2 := z + t3

z := t2

t5 := x + 1

x := t5

goto L1

L2: sum := z

Code improvement 114

A name x in a basic block is said to be live in the block if its value is used
at a later stage in the program. Otherwise we say that x is dead in the block.

Two basic blocks are equivalent if they compute the same values for the
same live names.

The following operations, which can be performed on basic blocks, are called
structure preserving transformations. They transform a block into an equivalent
block, i.e. performing them does not change the meaning of the program.

Common subexpression elimination

If two statements compute the same value then one can be replaced with an
assignment of the LHS to the LHS of the remaining statement. If an expression
has already been computed and the values of its variables have not changed
since the computation then we can use the computed expression rather than
recomputing it.

We can modify the third block in the above example to get

t4 := x + 1

t3 := x * t4

t2 := z + t3

z := t2

t5 := t4

x := t5

goto L1

We need to be careful with subexpression elimination. Consider the code

price := tax + e

val := cost + e

cost := tax + e

tax := cost + e

We can eliminate cost := tax + e and replace it with cost := price,

price := tax + e

val := cost + e

cost := price

tax := cost + e

but we cannot replace the LHS of val or tax because whatever cost was when
val was defined it went up by e before tax was defined so val and tax do not
compute the same value.

Dead-code elimination

If x is dead in the block then statements of the form x := ... can be deleted.

Renaming temporary variables

If t is a temporary name introduced by the compiler we can replace t by a new
temporary u provided we replace all the occurrences of t in the program by u.

Code improvement 115

Interchange of statements

If we have two consecutive statements in the block such that the LHS of each
does not appear on the LHS or the RHS of the other, then the order of the two
statements can be swapped. In Example 1 of Section 7 we can swap the order
of the statements z := t2 and t5 := x+1.

Algebraic simplification

We can replace x := y + 0 or x := y * 1 by x := y, and x := y * 0 by x

:= 0 (this is sometimes called constant folding). It may be ‘cheaper’ to replace
x := y ↑ 2 with x := y * y (sometimes called strength reduction).

Copy propagation

Given a statement x := y, where x is dead outside the basic block, we can
replace all occurrences of x after this statement by y. The point of this is
that x then becomes dead at the point of the assignment x := y and thus this
statement can be deleted using rule 2 above.

Examples

Using this to transform the code from Example 2 in Section 8 gives:

prod := 0

i := 1

L : t1 := i * 2

c_A := base_A - 2

t2 := c_A[t1]

c_B := base_B - 2

t4 := c_B[t1]

t5 := t2 * t4

t6 := prod + t5

prod := t6

t7 := i+1

i := t7

t8 := i < 11

if t8 goto L

Transforming the code from Example 1 gives:

x := 1

z := 0

L1 : t1 := x < n

t6 := t1=0

if t6 goto L2

t4 := x + 1

t3 := x * t4

t2 := z + t3

Code improvement 116

z := t2

x := t4

goto L1

L2 :

sum := z

9.2 Flow Graphs

So far we have looked at optimizing code within a block. We now consider
optimizing the numbers and order of the blocks themselves.

A flow graph is a directed graph whose nodes are the basic blocks of some
three address program. There is a distinguished first node: that node whose
leader is the first statement of the code. This is called the initial node. There
is a directed edge from the block B1 to the block B2 if there is a conditional or
unconditional goto statement at the end of B1 which goes to the first statement
of B2, or if B1 does not end in an unconditional goto and the first statement of
B2 follows the last statement of B1 in the program sequence.

The flow graphs for the partially optimized versions of Examples 1 and 2:

prod := 0 x := 1
i := 1 z := 0

L: t1 := i∗2 L: t1 := x<n

L2: sum := z

c A := base A − 2 t6 := t1 = 0

t2 := c A[t1] if t6 goto L2

c B := base B − 2
t4 := c B[t1]
t5 := t2 ∗ t4

t6 := prod + t5

t4 := x + 1

prod := t6

t3 := x ∗ t4

t7 := i + 1

t2 := z + t3

i := t7

z := t2

t8 := i < 11

x := t4

if t8 goto L

goto L1

�� � �� �'

&

$

%

? ?�
�
�
�

	

'

&

$

%�� ��

�
�
�
�
�
�
�
���

PPPPq

+

B0

B1

B3 B2

Let B and B′ be nodes of a flow graph. We say that B dominates B′, and
we write B dom B′, if every path from the initial node to B′ passes through B.
Note: every node dominates itself and the initial node dominates every node.

In the above example, B1 dominates B1, B2 and B3, while B2 and B3
dominate only themselves.

9.2.1 Natural loops

A natural loop in a flow graph is a subgraph which:

1. Contains a header – a node that dominates every other node in the sub-
graph.

2. Contains a tail – a node that is connected to the header and which has
the property that all the other nodes in the subgraph are connected to it
via a path that does not include the header.

Code improvement 117

Generally, to identify natural loops look for possible headers and matching tails.
For Example 1, B1,B2 is the only possible candidate pair, because there

must be an edge from a node to a node that dominates it. Then include all
other nodes connected to the tail via a path not including the head (in this case
there aren’t any).

����B2

����B1

?

I

A natural loop is strongly connected – there is a path from any node to
any other node in the loop. So, a natural loop is a loop in the sense that it is
possible to go round and round forever, and there is a unique entry point (the
header) to the natural loop from the rest of the flow graph.

A natural loop is an inner loop if no subgraph of it is a natural loop. So it
contains no loops itself. When improving code, the best efficiency savings are
likely to come from improving inner loops.

9.2.2 Code motion

Code motion is a transformation that takes an expression whose value remains
unaltered throughout the execution of a loop and places it outside the loop.
The idea is that originally the expression is reevaluated each time the loop is
traversed, but by taking it outside it is only evaluated when the loop is entered.
We put such expressions in a preheader.

Given a natural loop, its preheader is a new block which is added to the flow
graph immediately above the header of the loop. There is one new directed edge
from the preheader to the header, and all the edges which used to enter the
header, except the one from the tail, are now made to enter the preheader.

����
����

?

�
�
�
�header

�
�
�
�tail

@@R

A
AAU

�
A
AU ?

����
����

?

�
�
�
�header

�
�
�
�tail

@@R

A
AAU

?

preheader

A
AU ?�
�
�
�

=

The code improver then places into the preheader any loop invariants - expres-
sions from the loop whose value is constant within the loop.

Code improvement 118

In the partially optimized version of Example 2 the values of cA and cB
are loop invariants. Notice however, that t2 may not be constant. It is always
cA[t1] but the value of t1 may change during repeated executions of the loop,
changing the value of t2. So it cannot be put into the preheader.

prod := 0
i := 1

L: t1 := i∗2

c A := base A − 2

t2 := c A[t1]

c B := base B − 2

t4 := c B[t1]
t5 := t2 ∗ t4

t6 := prod + t5
prod := t6
t7 := i + 1
i := t7

t8 := i < 11
if t8 goto L

�� �
?�

�
�
�'

&

$

%

? �

9.2.3 Code hoisting

Expressions that appear in more than one basic block may be moved to a com-
mon ancestor block. If several lines of code occur in each block then separating
these out can save memory space.

x := 1
z := 0

t := i<3

t := i<3

t := x+z

L1: x := 1
L1: i := x∗z

L2: x := y+1

L2: x := y+1

if t goto L1

if t goto L1

goto L2

z := 0
i := x∗z

x := 1
z := 0

i := x+z
goto L2

�� �
?

�
�
�
�

�� ���� ���� ��

�
�
�
�

�
�
�
�

�
�
�
��

�
�
��

XXXXz

XXXz
XXXz

�
��	

'
&
$
%

?

XXXXXz

?

9.2.4 Loop fusion

Loops often have computational overheads which are nothing to do with the
particular function of the loop, but are just ‘book-keeping’. For example, a loop
which is performing an iteration has to test and then increment the value of
the iteration counter each time the loop is executed. If the code contains two
loops it may be possible to merge them into one, so that there is only one set
of such overheads instead of two.

The following code contains two loops, the first calculating the sum of the
integers between 1 and 100, and the second calculating their product.

Code improvement 119

L1: t := i>=100

L3: s := j>=100

L2: j := 1

i := 1

L4: z := sum∗prod

if t goto L2

if s goto L4

y := 1

x := 1

prod := 1

sum := 0

sum := sum+x

prod := prod∗y

x := x+1

y := y+1

i := i+1

j := j+1

goto L1

goto L3

�
�
�
�

�
�
�
��

�
�
�

�
�
�
�

?

XXXXXz

XXXXXz

?

?

?

9

9

'
&

$
%

�� ��

'
&

$
%

We can merge the two loops, performing both calculations at the same time.

L1: t := i>=100

L4: j := i

i := 1

if t goto L4

z = sum∗prod

y := 1
x := 1

prod := 1
sum := 0

sum := sum+x

prod := prod∗y
x := x+1

y := y+1
i := i+1
goto L1

�
�
�
�

�
�
�
�

XXXXXz

? 9

'

&

$

%
'

&

$

%?

Of course, this code is still not optimal. We could do away with both x and
y and use the counter i for the actual work of the loop as well.

Code improvement 120

L1: t := i>=100

L4: j := i

i := 1

if t goto L4

x := i

sum := 0

y := i

prod := 1

sum := sum+i

z := sum∗prod

prod := prod∗i
i := i+1
goto L1

�
�
�
��

�
�
�

?

XXXXXz

? 9

'
&

$
%'

&
$
%

The point in this section was simply to illustrate the efficiency gain by
merging the actual loop overheads.

Even if the loops are iterating over different size sets we can still use loop
fusion to gain some efficiency.

L1: t := i>=100

L3: s := j>=50

L2: j := 1

i := 1

L4: z := sum∗prod

if t goto L2

if s goto L4

y := 1

x := 1

prod := 1

sum := 0

sum := sum+x

prod := prod∗y

x := x+1

y := y+1

i := i+1

j := j+1

goto L1

goto L3

�
�
�
�

�
�
�
��

�
�
�

�
�
�
�

?

XXXXXz

XXXXXz

?

?

?

9

9

'
&

$
%

�� ��

'
&

$
%

Code improvement 121

L1: t := i>=50

L5: t := i>=100

L4: j := 50

i := 1

if t goto L5

if t goto L4

z = sum∗prod

y := 1
x := 1

prod := 1
sum := 0

sum := sum+x

sum := sum+x

prod := prod∗y
x := x+1

x := x+1

y := y+1
i := i+1

i := i+1

goto L1

goto L5

�
�
�
�

�
�
�
�

�
�
�
�

XXXXXz

XXXXXz

? 9

9

'

&

$

%
'

&

$

%?

'
&

$
%

?

9.3 Directed Acyclic Graphs (DAGS)

In this section we shall look at how DAGs are used to help make structure
preserving transformations of the types described in above. In particular, we
shall use them to identify common subexpressions that can be eliminated.

A DAG is like a parse tree except that children can have more than one
parent. The interior nodes of a DAG are labelled with operators, and the
leaves are labelled with particular names from the three address code being
optimized.

We construct a DAG for each basic block of the code, and associate an inte-
rior node with each statement in the block. (The same node may be associated
with more than one statement.) There is a leaf of the DAG for a name if it is
used in the block before a statement that redefines it is executed.

9.3.1 Constructing a DAG from code

We begin with the empty graph, and construct the graph from the leaves up-
wards, beginning with the first statement in the block and working down each in
turn. We explain how to extend the graph for each possible type of statement.

1. Suppose that the next statement to be considered is of the form
x := y op z. First we look to see if there are nodes that have y or z
attached. If not we add new leaves labelled with y and/or z, and attach
y and z, respectively, to these nodes. If there is already a node labelled
op with children y, z we attach x to this node, otherwise we create a new
node labelled op, attach x to it, and draw edges from the new node to

Code improvement 122

the two nodes y and z. Finally we look to see if there is any other node
which has x attached. If there is we remove this x.

2. If the next statement to be considered is of the form x := op z we follow
exactly the same procedure as (1) but ignoring the references to y.

3. Suppose that the next statement to be considered is of the form x := y,
we check to see if there is a node which has y attached. If there is not we
add a new leaf labelled y and attach y to that. Then we just attach x to
the node to which y is attached. Again we then look to see if there is any
other node which has x attached, and if there is then remove it.

4. If the next statement is a relational operator such as if z goto L, we
treat it as a statement of type (2) in which the LHS, x, is undefined. So
we attach the label L to the node to which z is currently attached. (No
problems arise here because each basic block can contain at most one goto
statement, and this will be the last statement in the block.)

Example Consider the following block from Example 1 above:

t4 := x + 1

t3 := x * t4

t2 := z + t3

z := t2

t5 := x + 1

x := t5

goto L1

The associated DAG is:

���x
���+
���1

���z
���+
���∗ ���L1

t2, z

t3

6 x 1

t4, t5, x

6 z

�
��=

Z
ZZ~

C
C
C
CCW

Z
Z
ZZ~

�
��+

Z
ZZ~

9.3.2 Code improvements from DAGS

Constructing the DAG for a basic block automatically detects the common
subexpressions. By looking at the DAG we can tell which names from outside
the block are genuinely used within it, those being the names for which a leaf is
created. If a leaf is not created the value of that name on entering the block is
irrelevant. We can also tell by looking at the DAG which statements compute a
value which still exists when the block is exited, being those statements whose
associated node still has a name attached. These things help in the recognition
of dead code.

Code improvement 123

In the above example, the values of t2 and t5 are not used outside the block
so when we use substitution to replace them they become dead and hence can
be eliminated.

9.3.3 Reconstructing code for DAGs

In order to be able to use DAGs we need to know how to reconstruct code from
them. We do this by constructing three address statements at the nodes of the
DAG. This is referred to as evaluating the node. When we have evaluated a
node we assign the value to one of the names attached to the node.

We explain how to evaluate a node labelled x that has two children. Nodes
with one child are evaluated in a similar way. By assumption the children will
have already been evaluated, and if these nodes have more than one attached
name one will have been singled out to carry the value of the node. If there is
no attached name and the node is a leaf then the label of the leaf is taken to be
its attached name. If the node is interior then a new temporary name is created
and attached to the node. Thus we shall suppose that y, z are the chosen names
attached to the children of the node. The node is now evaluated as y op z. We
turn this into a three address statement by choosing a name which is attached
to the node. This is then the name singled out to carry the value of this node.
If the name chosen is x then the statement x := y op z is added to the list of
code being constructed. We cannot single out x to be the chosen name if x also
labels a child of another node that has not yet been evaluated. If this means
that there is no legal choice of name then a new temporary name is created. If
there is more than one legal choice of names then preference is given to those
names that are still live (are used later) outside the block.

It is safest, although not entirely necessary, to re-evaluate the nodes in the
order in which they were created. When code has been constructed for each
node, except for the goto node if there is one, we add assignment statements
for each name not singled out to carry the value of a node, but is still live at
the end of the block, by adding statements u := x for each name u attached to
the node whose value is carried by x. However, if u is dead at this point then
we don’t add u := x because it is dead code. Finally we add the code from the
goto node, if there is one, which completes the reconstruction.
Example We reconstruct the code from the above DAG

t4 := x + 1 (can’t choose x)

t3 := x * t4

z := z + t3 (we can choose z since it is not needed

x := t4 to evaluate another yet to be evaluated node)

goto L1

What would have happened if we had chosen x to carry the value of its node?

x := x + 1

t3 := x * x (if x is initially a, t3 has the value (a + 1)(a + 1)

rather than a(a + 1) as in the original code.)

Code improvement 124

What if we had written the assignments first?

t4 := x + 1

x := t4

t3 := x * t4 (same problem)

Notice The order of the children matters, y op z may not be the same as
z op y.

Exercise Construct the DAG for the larger of the two basic blocks of the code
given in Example 2 of Section 8. Use the DAG to reconstruct a more efficient
equivalent block of code.

Error detection, reporting and recovery 125

10 Error detection, reporting and recovery

The basic function of a parser is to check whether an input string is in the
language defined by a particular grammar. In an ideal world, every string pre-
sented to a parser would be a valid string in that language, but as we all know,
humans often present invalid strings to compilers. The usability of a real com-
piler is highly dependent on the quality of the feedback provided to the user
in the case of an erroneous string being input. So far, our parsers effectively
simply output yes or no when given a string to check. A compiler that just
stopped on an erroneous string and output no would be almost unusable, be-
cause the users of the compiler would have to examine the string to find the
source of the error: in effect they would have to simulate the behaviour of the
parser themselves!

This section considers ways to augment parsers so that they provide useful
feedback when errors are detected. We would like to do the following.

1. Report the position of an error accurately.

2. Issue a useful error message that explains the nature of the error in terms
of the language being parsed, as opposed to the internal operations of the
parser: few compiler users will be interested in the current state number
the parser happens to be in, for instance.

3. Continue parsing the remainder of the input after the error has been
detected so that further potential errors may be collected.

4. Not slow down the parsing process for strings which are in the language.

It turns out that there is a sort of inverse relationship between the power
of a parsing technique and its ability to meet these criteria. LL(1) parsers
expect to see a particular token at every stage of the parse, and so when an
invalid token appears the parser immediately knows that an error has occurred,
and it knows which tokens would have been valid at the error point. Thus
criterion 1 is satisfied and it is relatively easy to fulfill criterion 2 because the
parser knows what should have come next. A top-down, backtracking parser
has much greater parsing strength but can only detect an error when all possible
backtracking possibilities have been tested and failed. At this point the parser
cannot know which particular partially consumed input string is the one that
defines the error.

Criterion 3 is much more of a problem: our ability to continue cleanly after
an error is as much a function of the grammar as the parsing technique. Modern
block structured languages cause particular problems compared to earlier line
oriented languages such as FORTRAN and BASIC. The reason for this is that
in line oriented languages errors are rather localised: we know that a statement
is terminated by a line end, so a sensible recovery technique is to simply throw
away the rest of a line in which an error is detected.

10.1 Classes of error

Errors can be detected during various phases compilation.

Error detection, reporting and recovery 126

� Lexical errors arise from strings of characters that can not even be built
up into a sequence of tokens. An obvious example is the presence of a
character that is not valid anywhere in the language: for instance the
back quote character ‘ is illegal in any ANSI C program except when it
occurs within a string literal, character literal or a comment. At a more
complicated level, only a few sequences of punctuation symbols are local
in ANSI C: the string > >? for instance is invalid.

� Syntax errors are detected by the parser and are caused by strings of well
formed tokens that are not in the language. In this section we are mainly
concerned with syntax errors and what to do after one is detected.

� Semantic errors arise from strings which are in the language but ‘mean-
ingless’. Standard grammars for ANSI C rely rather heavily on semantic
checking: for instance the program fragment 1[3] is syntactically permit-
ted but meaningless because an integer constant cannot be indexed.

A more frequently occurring kind of semantic error is the violation of a
type rule, such as calling a function with too many parameters or at-
tempting to assign a character literal to a string variable. Type checking
is a basic feature of most modern programming languages, and all type
checking falls into the class of semantic checking because as we have seen
we cannot express type compatibility rules for an infinite language using
a finite context free grammar.

Reporting semantic errors can be difficult because in some compilers se-
mantic errors are only detected after the initial parse has been completed
and so the original source text may not be immediately available.

� Logical errors arise from a misunderstanding on the compiler user’s part:
either of the algorithm they are attempting to implement or of the se-
mantics of the programming language. In either case the program passes
through the compiler correctly but when executed displays behaviour
other than that intended by the programmer. The compiler cannot help
here: a better programmer must be obtained.

Sometimes a logical error can be caused by what is effectively a syntax
error which converts the program into another valid program: consider this C
fragment:

z=300;

if (a>b)

while (z!=0);

{

y=b+z;

z-=3;

}

This innocuous looking while loop will in fact go into an infinite loop because of
the misplaced semicolon after the while: the ‘body’ of the while loop looks like

Error detection, reporting and recovery 127

a free standing code block. In cases like this a better programming language
must be obtained: a language such as Modula-2 which explicitly delimits the
end of each compound statement would be able to catch this error syntactically.

10.2 Error messages

Early compilers (and some badly written modern ones) issue error messages
that convey little information to the user. This may be because they convey
little information at all, or because the message is couched in terms that are
meaningful to the compiler writer but not to the user. As an example of the
latter: the rdp parser generator can be set up so that whenever a syntax error
is detected the message tells the user which grammar production was being
parsed at the time the error was detected. This is very useful to the compiler
writer when debugging a grammar, but can only be confusing to the eventual
compiler user who knows nothing of the detailed structure of the compiler’s
grammar, and most likely does not even know what a grammar is.

A common fault in compilers for small systems is to simply issue an error
number rather than a full diagnostic. When memory was in very short supply,
it was often difficult to fit the compiler and the compiled intermediate code into
memory, and one of the first things to be jettisoned was the set of strings used to
display the actual error messages. Instead, the user had to keep a sheet of error
messages to hand whilst working and match up the displayed error numbers to
the printed messages. This strategy is unnecessary on modern machines, but
lazy implementors sometimes use very terse messages.

10.3 Error recovery

A compiler that simply stops when it first encounters an error is unacceptable
in some environments, even if it issues an excellent error message. Ideally,
we would like the compiler to carry on after the point at which the error was
detected and look to see if there are any more errors in the source file.

Some errors are much easier to recover from than others. Semantic errors,
in particular, tend not to disrupt the parse. This is not surprising: after all a
semantic error is by definition embedded within a syntactically correct substring
so all that needs to happen is for the error (say, a type violation) to be reported
and for parsing to continue.

Some types of syntax error are easy to recover from too. Consider, for in-
stance, a parameter list for a function that should be comma delimited, but
which has had one of its delimiters mistyped as a semicolon. Once the parser
has started to check a parameter list it should not expect to see any semicolons
before the closing parenthesis, so it could, for instance, simply treat any punc-
tuation symbol as a delimiter if it is not a close parenthesis (although, of course,
an error message would be issued for non-commas).

Some types of syntax error are difficult to recover from. In particular errors
relating to bracket nesting are particularly troublesome, be they block begin-end
delimiters (such as { } in C), arithmetic brackets or parameter list brackets.

Error detection, reporting and recovery 128

The characteristic of these errors is that omission of a closing bracket changes
the context of the remaining code. Consider the following fragments.

void b(void) {

while (a>2) {

if (a>b) {

a = 3;

if (a == 6) {

z=5;

y=4;

} }

}

void a(int b) {}

The error here is in fact a missing brace } at the end of the second if

statement, but the compiler will not notice the error until it gets to the start
of the next function. In fact, depending on the error recovery strategy the
definition of void a() may be deleted, and that will then cause later errors at
points in the program where a() is called.

In free format block structured languages, bracketing errors can cause a
cascade of error messages. A good recovery strategy ought to suppress these
spurious errors, but in general it is extremely hard (if not impossible) to engineer
such a strategy.

Error recovery from lexical errors is usually trivial: the lexer simply discards
the characters that did not form a recognisable token, effectively converting
them to white space. However, it may be that some valid tokens get discarded
this way: should the string &&> be completely thrown away or converted to &&.
So even lexical error recovery may cause knock on effects at the syntactic level.

10.4 Error correction

There have been attempts to engineer compilers that have error correcting
properties. Sometimes these translators are called do what I mean systems.
Imagine, for instance, a command line interface to an operating system that
can do spelling correction on command names. The command coppy could
easily be mapped to copy. At a more sophisticated level, humans often omit
punctuation symbols such as ; and , from their programs, and in many cases
simply inserting punctuation symbols can correct the programmer’s error.

Quite sophisticated error correcting compilers were in vogue in the 1970’s
for use by students, on the basis that compiling was an expensive operation on
large time sharing computers and anything that could be done to minimise the
number of bad runs would be useful.

In practice error correcting compilers are rather dangerous: there is no
guarantee that the ‘corrected’ program is the one that the programmer actually
intended, that is simply converting a syntactically incorrect program into a
syntactically correct one might still leave (or even create) semantic errors. In
addition, real error correcting compilers do not actually manage to correct any
but the most trivial errors.

Error detection, reporting and recovery 129

10.5 Stop on first error

Given the enormous increase in parse speeds in recent years (as a result of
technology improvements) it may not be necessary to bother with error recovery
at all. A good example of the alternative approach is Turbo Pascal, a fast Pascal
compiler for Intel architectures that combines an editor, debugger and compiler.
The compiler source file is held in memory in the buffer, and code is written
directly into memory. The compiler uses a single pass recursive descent parser,
and can compile many thousands of lines per minute even on very low powered
computers. As a result, the compiler can find the first error in a piece of code
within a fraction of a second. Turbo Pascal simply stops at the first error with
the editor showing the position of the error. The user then corrects this, and
recompiles rather than getting a complete list of errors.

10.6 Panic mode error recovery

There is are large number of error recovery strategies in the literature, but no
generally accepted best practice. The simplest and most easily implemented
strategy is panic mode error recovery.

Panic mode recovery involves simply discarding input tokens until a token
is seen that is in some supplied synchronisation set. Often synchronisation
sets are defined on a rule-by-rule basis, so that we can talk about the set
SYNC(N) where N is some nonterminal, in much the same way as we talk about
first(N) and follow(N). In fact, a good starting point for constructing a
synchronisation set is to assign

SYNC(Ni) = follow(Ni) ∪ $

for all the Ni in the grammar.
Panic mode correction is simple, but will often cause large parts of the input

to be skipped. Since these parts may include definitions and structure required
in the postfix string (that part parsed after synchronisation is achieved) further
errors may be triggered. In situations where multiple errors in statements are
unusual it often works well and has the added advantage of being guaranteed
not to go into an infinite loop.

Top down parsers lend themselves to panic mode error recovery because
they match a complete grammar rule before returning. In effect, top down
parsers guarantee to match a complete grammar rule at each invocation. A
good error recovery strategy, therefore, is to leave the parser looking at a valid
input token before returning from an invocation. In practice, this means that
if we detect an error whilst parsing the grammar rule for nonterminal N we
should at the very least ensure that the lexical analyser is supplying a token in
follow(N) before returning.

Target specific code generation 130

11 Target specific code generation

In the previous section we have seen how code may be generated using at-
tributes and semantic actions; and how standard optimisations may be applied
to convert inefficient sequences of code into semantically equivalent pieces of
code that either require less memory space or execute more rapidly. All of
these techniques may be applied without reference to the actual machine on
which the code may run (although in detail, some optimisations might only be
applied on certain classes of machine).

After code has been improved in this general way we are left with the prob-
lem of emitting specific machine instructions that match our target architecture.
There are three parts to this problem:

code selection The selection of code templates that implement program frag-
ments on the target machine, for instance a + operator would normally
map to an ADD instruction on the target hardware, but if the relevant
expression were of the form

temp = temp + 1

there might well be a special INC (increment) instruction that could be
used instead of the standard ADD instruction.

register allocation The selection of variables that should reside in machine reg-
isters. Register based variables are essentially available at zero time cost,
as opposed to main memory variables which require a main memory cycle
to be used during instruction execution. On most modern RISC archi-
tectures variables must be register resident to be used in an arithmetic
or logic instruction, so register allocation is even more critical than on
traditional memory-register architectures.

scheduling On processors with multiple functional units, or programmer-visible
pipelines, operations must be carefully allocated to functional units and
their ordering arranged so as to minimise structural, data and control flow
hazards.

Code selection and register allocation are relatively well studied and rela-
tively well understood problems. Code scheduling is a more recently studied
area, mainly because in the 1970’s some theoretical studies showed that the
level of potential instruction level parallelism (ILP) within basic blocks was
low – of the order of only two-three. Interest was renewed in the early 1980’s
when techniques developed for microcode compaction were applied to RISC like
architectures with multiple functional units. Much of the current research in
computer architecture and compiler design focuses on the interaction between
the compiler and the architecture, and ways in which ILP may be exposed to
the compiler and used to schedule code efficiently.

Target specific code generation 131

11.1 Code selection

In this course we have avoided dealing with specific architectures. This is
because most traditional machines such as the VAX offer a wealth of special
features which might be exploited by a compiler, but a study of such features
does not generalise across different architectures. In an introductory course such
as this we concentrate mainly on principles rather than the details of particular
systems so a VAX specific code selector would be of little interest here.

With RISC architectures the situation is easier since the main commercial
RISC architectures are much more similar to each other than any set of tradi-
tional architectures. For illustrative purposes, we shall construct an instruction
set that reflects the main features of a real instruction set.

Instructions come in four main classes: arithmetic and logic operations such
as ADD and DIV; copy instructions which load and store results to main memory
or replicate data between registers; flow of control instructions including branch,
jump, procedure call and procedure return; and system instructions such as
those used to change the processors mode or manage interrupts. The system
instructions are unlikely to be used by a compiler: they are more the province
of the operating system than user programs.

The following is a simple three address instruction set for a processor which
supports the four basic arithmetic operations along with branch-if-true, branch-
if-false and branch-always instructions:

ADD dst, src1, src2 dst← src1 + src2
SUB dst, src1, src2 dst← src1− src2
MUL dst, src1, src2 dst← src1× src2
DIV dst, src1, src2 dst← src1÷ src2

EQ dst, src1, src2 dst← src1 = src2
NE dst, src1, src2 dst← src1 6= src2
GT dst, src1, src2 dst← src1 > src2
GE dst, src1, src2 dst← src1 ≥ src2
LT dst, src1, src2 dst← src1 < src2
LE dst, src1, src2 dst← src1 ≤ src2

CPY dst, src dst← src

BEQ src, label if src = 0 then go to label
BNE src, label if src 6= 0 then go to label
BRA label go to label

In each case here, dst, src1 and src2 may be the name of a register or
the address of a memory location. Note that this is in contrast to real RISC
architectures in which only the CPY instruction has this generality with all other
instructions taking only register names as operands.

Using this instruction set we can compile high level code fragments into
assembly-like instructions. This high level program

a = b + c * d / e * f - ---g;

if a < 2 then begin z = 0; x = 3 end;

while x == 3 do x = x - 1;

generates this assembly level three address program:

Target specific code generation 132

MUL temp_1,c,d ;temp_1 := c * d

DIV temp_2,temp_1,e ;temp_2 := temp_1 / e

MUL temp_3,temp_2,f ;temp_3 := temp_2 * f

ADD temp_0,b,temp_3 ;temp_0 := b + temp_3

SUB temp_5,0,g ;temp_5 := 0 - g

SUB temp_4,temp_0,temp_5 ;temp_4 := temp_0 - temp_5

CPY a,temp_4 ;a := temp_4

IF_0:

LT temp_6,a,2 ;temp_6 := a < 2

BEQ temp_6,ELSE_0 ;ifn temp_6 go to ELSE_0

CPY z,0 ;z := 0

CPY x,3 ;x := 3

BRA FI_0 ;go to FI_0

ELSE_0:

FI_0:

DO_1:

EQ temp_7,x,3 ;temp_7 := x == 3

BEQ temp_7,OD_1 ;ifn temp_7 go to OD_1

SUB temp_8,x,1 ;temp_8 := x - 1

CPY x,temp_8 ;x := temp_8

BRA DO_1 ;go to DO_1

OD_1:

Note that many temporary variables are used which have the property that
they are written to and read from exactly once. No variables from the high
level program are written to again unless explicitly required by the high level
program. This is to ensure that if a variable is still live (that is if it is used
again further down) its value will still be available. In detail, many variables
may be kept for longer than is absolutely required: no temporaries are reused
here for instance. Data flow analysis techniques may be used to discover which
variables have overlapping live ranges and a technique called graph colouring
may be used to force variables with non-overlapping ranges to share storage.

11.2 Register allocation

Registers provide the processor with a small amount of memory that is acces-
sible very quickly. Allocation of registers to the most frequently used variables
can greatly speed up execution by reducing the number of main memory ac-
cesses. We can distinguish a family of register based machines.

� Accumulator based, with only one data register, eg the PDP-8 and very
early microprocessors.

� Specialised registers for addressing (index registers) and data, eg the Mo-
torola 6809 microprocessor with two data registers and two data registers.

� General purpose register machines such as the VAX-11, the MIPS, SPARC
and Alpha RISC processors.

11.3 The register allocation problem

Register allocation breaks down into several phases:

Target specific code generation 133

1. Register counting wherein the number of registers used by an expression
is calculated.

2. Register allocation proper in which we decide which variables will be put
in registers.

3. Register assignment in which actual register numbers are associated with
each registered variable.

11.4 Allocation schemes

Register allocation schemes vary considerably in complexity:

1. Registers are split into two groups, one for holding temporary results the
other for storing variables. Allocation of registers for variables in inner
loops is done first as this is where the speedup is greatest.

2. Usage counts allocate registers to the most frequently used variables.

3. Graph colouring uses the life time of variables to determine which vari-
ables and expressions can share registers. A node in a graph is created
for each live value with edges between nodes representing overlapping live
time intervals.

11.5 Register counting

Consider the following portion of an abstract parse tree:

���e1 ���e2
���op?

�

S
SSw

? ?

The child nodes e1 and e2 each correspond to sub-expressions requiring n1 and
n2 registers each to evaluate. If the left hand expression is evaluated first, then
its result will have to be held in a register whilst the right hand side is evaluated,
hence the total number of registers required is max(n1,n2 + 1).

If n1 < n2−1 then it makes sense to evaluate the right hand side first. Some
compilers run through the tree swapping children for commutative operators
(not subtract or division!) so as to minimise the ‘natural’ register count.

11.6 Programmer driven register allocation

In some languages (such as C or Bliss, a systems programming language used by
DEC) register allocation can be done by the programmer by adding a register

designator to declarations. Only do this after running a profile on your program!

Target specific code generation 134

There was a real compiler (for a language called PPL) which reordered
expressions and then allocated registers in a first-come, first-served way. Only
five registers were available, so heavily nested expressions caused the compiler
to stop with a message asking the user to simplify the expression. This was not
very satisfactory.

The process of selecting variables to be ejected from registers is called reg-
ister spilling to main memory.

11.7 Usage counts

An easy way to decide which registers should be spilled is to count the number
of times that a variable is referenced within basic block. If a variable is read
again within a block after it has been written, then keeping that variable in a
register will save one main memory cycle per read. If the block is a loop, then
we also save a write at the end of the block. On the debit side, the register
must be loaded at the start of the block (which costs two cycles), but if the
block is loop then this negligible. For a block B loop that is executed many
times this formula describes the benefits of registering variable x

use(x,B) + 2× live(x,B)

where use(x,B) is the number of times x is read in B prior to being written
and live(x,B) is 1 if x is live on exit from B and 0 otherwise.

11.8 Register allocation by graph colouring

The purpose of a graph colouring phase is to detect variables with non-overlapping
live ranges and force them to share storage.

A graph colouring register allocator uses two passes. In the first pass, the
code generator assumes that there is an infinite number of registers available.
In effect, the symbolic variable names in the intermediate code become register
names. Stack pointers and other special variables are also assumed to have
their own dedicated registers. Program temporaries, such as intermediate val-
ues required in address resolution for multi-dimensional arrays are also given
dedicated registers.

The second pass attempts to map these symbolic registers onto physical
registers in a way that minimises register spills (a spill being the unloading of a
register into a main memory location so that the register may be freed for use
by another variable).

The allocator constructs a register-interference graph in which the nodes
are symbolic registers and an edge connects two nodes if one is live at a point
where the other is defined. A graph is said to be coloured if each node has been
assigned a colour such that no two adjacent nodes have the same colour. An
attempt is made to colour the graph using n colours where n is the number of
registers available.

Graph colouring is NP-complete, but the following heuristic usually works
well in practice: suppose a node m in a graph G has fewer than n neighbours.

Target specific code generation 135

Remove m and its edges from the graph to form a new graph G′. A colouring
of G′ can be extended to a colouring of G by assigning m a colour not assigned
to any of its neighbours.

By repeatedly eliminating nodes having fewer than n edges from the register
interference graph we either obtain the empty graph, in which case we can
obtain a colouring of the graph by colouring the nodes in the reverse order in
which they were removed, or we obtain a graph in which each node has n or
more adjacent nodes in which case a colouring with n colours is impossible. At
this point a node is spilled by introducing code to store and reload the register.
A good rule is to avoid choosing spill nodes that are in inner loops.

After removing the spilled node from the graph, another attempt is made
to perform a colouring: the whole process iterates until a successful colouring
is obtained.

11.9 Spilling algorithms

Any register allocation scheme is critically dependent on the quality of the
spilling decisions made. The Belladay register allocation algorithm is derived
from work on page swapping algorithms

If all registers have not been allocated

then allocate an unused one to X

else if any value in a register is no longer required

then allocate this register to X

else choose the register whose value is next used

furthest away

store the value of that variable if it has been

changed since it was loaded

allocate this register to X

This has the effect of spilling the register that will be unused for the longest
period of time. There is an interesting analogy with paging schemes here. Recall
that in a virtual memory environment page fault may trigger the ejection of a
page from main memory onto disk, in other words a page may be spilled to the
swap file. In operating systems a least recently used algorithm is often used so
that the page that has remained untouched for the longest period up until now
is ejected. Of course there is no way to be sure that a page that has recently
been unused will not be needed again immediately but it is a useful heuristic.

Ideally, the operating system would like to know which page will remain
unused for the longest time so as to minimise page thrashing, but since the
operating system can not know what the future behaviour of processes will be
it is forced to rely on history rather than prediction. A register allocator, on the
other hand, has access to dataflow information which provides a reliable predic-
tor of future behaviour. For straight line code (basic blocks) the allocator has
exact information and can produce the optimal solution. For code containing
loops the allocator usually assumes that the loop will be taken, since the prob-
ability of a loop block not being taken at all is rather low. For if statements

Target specific code generation 136

a conservative allocator will take the worst estimate provided by considering
both branches equally likely.

We see here a spectrum from statically available information, such as the
behaviour within a basic block, through fairly reliable estimation in loops and
fairly unreliable estimation across if statements to the completely dynamic and
unpredictable behaviour of processes within a system for which no source code
is available for scrutiny.

11.10 Instruction scheduling and speculative execution

Just how rapidly could a program be completed? As a way of thinking about
this problem, imagine that a program has executed once following a particular
pattern of branches and loop counts and that we want to execute the same pro-
gram again using exactly the same input data and that the previous execution
path has been recorded in a profile. Assuming that the program is deterministic
(and very few real computer systems are genuinely non-deterministic) then we
would know in advance exactly which way each branch instruction would go. In
effect, we could unroll loops and delete untaken branches so as to yield a single
sequence of instructions – one very large basic block in fact. We could perform
live range analysis and data dependency analysis to establish the degree of
available instruction level parallelism in the block.

Now imagine that we have at our disposal an infinitely large computer.
Here size is measured not just in terms of memory and disk capacity but (more
importantly for our purposes) an infinite number of functional units each of
which are capable of evaluating a result using three memory operands in a
single cycle. We could schedule our monolithic program using as many units
as are indicated by the level of ILP present at each point in the program. In
effect, the maximum overlap would be provided and so the number of cycles
required to complete the program would be minimised.

The real world is less convenient than this. To begin with, computers are
finite. Even machines with multiple functional units may not be able to serve
all levels of memory in a single cycle as we have seen. Most likely, a multi-
functional unit will have a small number of registers that it can use efficiently
and so we are left with a processor-memory bandwidth restriction just as in the
traditional von Neumann bottleneck. Perhaps the critical restriction is that
in reality we do not usually know the profile of a program in advance, so we
have to make assumptions about the most likely path or trace which will be
executed. We can schedule this path speculatively, that is assume that it will
be taken but add enough house keeping code so that if another trace is taken
then the work done speculatively can be undone. This is the basic idea behind
trace scheduling, the first of a family of techniques that may come to dominate
code generation.

The current frontier in computer architecture and compiler research is the
blurring the line between dynamic and static analysis of code, either by adding
hardware to support speculative execution or to use more sophisticated pre-
diction algorithms to drive code schedulers. New architectures with multiple
functional units are expected to be announced and these are likely to be al-

Target specific code generation 137

most impossible for humans to program directly. The wheel has turned full
circle: early 1950’s machines were hard to program because of the programmer
visible timing constraints and now modern architectures present an array of
capabilities that is too great to be kept track of without machine assistance.

