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Abstract

In this paper, we consider a number of results and six conjectures on
properly coloured (PC) paths and cycles in edge-coloured multigraphs.
We overview some known results and prove new ones. In particular,
we consider a family of transformations of an edge-coloured multigraph
G into an ordinary graph that allow us to check the existence of PC
cycles and PC (s, t)-paths in G and, if they exist, to find shortest ones
among them. We raise a problem of finding the optimal transformation
and consider a possible solution to the problem.

1 Introduction

The class of edge-coloured multigraphs generalize directed graphs. There
are several other generalizations of directed graphs such as arc-coloured
digraphs, hypertournaments and star hypergraphs, but the class of edge-
coloured multigraphs has been given the main attention in graph theory
literature because many concepts and results on directed graphs can be
extended to edge-coloured multigraphs and there are several important ap-
plications of edge-coloured multigraphs. For instance, in [10, 11] Dorninger
considers chromosome arrangement in a cell of an eukaryotic organism by
using the 2-edge-coloured multigraphs. For a more extensive treatment of
this topic, see [6, 7].

In this paper we overview some known results on properly coloured (PC)
cycles and paths in edge-coloured multigraphs, prove new ones and consider
several open problems on the topic. In Section 2 we briefly consider a prob-
lem of whether an edge-coloured graph has a PC cycle. In Sections 3 and 4,
we offer a useful tool to study edge-coloured multigraphs. In investigating
problems on PC subgraphs of edge-coloured multigraphs, it is convenient
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to transform an edge-coloured graph into an ordinary graph. We suggest
a new technique that somewhat automates this transformation. Moreover,
by proving some new results, we illustrate how the proposed technique al-
lows us to obtain more efficient algorithms for PC cycle and PC (s, t)-path
problems by reducing the order and size of the transformed graph. We raise
a problem of determining the minimum order and size of the transformed
graph, and describe the family of graphs that may be the solution to the
problem.

In Section 5 we study long PC cycles and paths in arbitrary edge-coloured
multigraphs and Section 6 is devoted to longest (mostly Hamilton) PC cycles
in edge-coloured complete graphs.

An m-path-cycle subgraph F of a multigraph G is a vertex-disjoint
union of m paths and a number of cycles in G (some cycles can be of length
2). If m = 0, we call F a cycle subgraph of G. For a vertex set X of a
multigraph G, G〈X〉 denotes the subgraph of G induced by X. For a pair
s, t of distinct vertices of G, a path between s and t is called an (s, t)-path.

We consider edge-coloured multigraphs, i.e., undirected multigraphs
in which each edge has a colour, but no parallel edges have the same colour.
If an edge-coloured multigraph G has c colours, we assume that the colours
are 1, 2, . . . , c and we call G a c-edge-coloured multigraph. We denote the
colour of an edge e of an edge-coloured multigraph G by χ(e). When G has
no parallel edges, we call G an edge-coloured graph.

Let G be a c-edge-coloured multigraph and let v ∈ V (G). By Ni(v) we
denote the set of neighbours of v adjacent to v by an edge of colour i; let
di(x) = |Ni(x)|. The maximum (minimum) monochromatic degree of
G = (V, E) is defined by

∆mon(G) = max{dj(v) : v ∈ V, 1 ≤ j ≤ c}
(δmon(G) = min{dj(v) : v ∈ V, 1 ≤ j ≤ c}).

Let χ(v) = {i : 1 ≤ i ≤ c, Ni(v) 6= ∅}. A path or cycle Q of G is properly
coloured (PC) if every two adjacent edges of Q are of different colours.

2 Existence of PC Cycles

Since a pair of parallel edges in a c-edge-coloured multigraph (c ≥ 2) forms
a PC cycle, in this section, we consider only c-edge-coloured graphs.

It is easy to see that the problem of checking whether a c-edge-coloured
graph has a PC cycle is more general (even for c = 2) than the simple
problem of verifying whether a digraph contains a directed cycle. Indeed,
consider a digraph D and, to obtain a 2-edge-coloured graph G from D,
replace each arc xy of D with edges xzxy and zxyy of colours 1 and 2, where
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zxy is a new vertex (zxy 6= zx′y′ provided xy 6= x′y′). Observe that G has a
PC cycle if and only if D has a directed cycle.

The following theorem by Yeo [21] provides a simple recursive way of
checking whether a c-edge-coloured graph has a PC cycle. (For c = 2,
Theorem 2.1 was first proved by Grossman and Häggkvist [14].)

Theorem 2.1. Let G be a c-edge-coloured graph, c ≥ 2, with no PC cycle.
Then, G has a vertex z ∈ V (G) such that no connected component of G− z
is joined to z with edges of more than one colour.

Let us consider the following function introduced by Gutin [15]: d(n, c),
the minimum number k such that every c-edge-coloured graph of order n and
minimum monochromatic degree at least k has a PC cycle. It was proved
in [15] that d(n, c) exists and that

d(n, c) ≤ 1
bc/2c(log2 n− 1

3
log2 log2 n + Θ(1)). (1)

Abouelaoualim et al. [1] stated a conjecture which implies that d(n, c) = 1
for each c ≥ 2. Using a recursive construction inspired by Theorem 2.1 of
c-edge-coloured graphs with minimum monochromatic degree p and without
PC cycles, Gutin [15] showed that

d(n, c) ≥ 1
c
(logc n− logc logc n) (2)

and, thus, the conjecture does not hold. The bounds (1) and (2) imply that
d(n, c) = Θ(log2 n) for every fixed c ≥ 2.

Conjecture 2.2. [15] There is a function s(c) dependent only on c such
that d(n, c) = s(c) log2 n(1 + o(1)).

In particular, it would be interesting to determine s(2).

3 P-Gadgets

We consider gadget constructions which generalize some known construc-
tions mentioned below. The P-gadget graphs G∗ and G∗∗ of an edge-coloured
multigraph G described in the next section allow one to transform several
problems on properly coloured subgraphs of G into perfect matching prob-
lems in G∗ or G∗∗.

Let G be an edge-coloured multigraph and let G′ = G − {x ∈ V (G) :
|χ(x)| = 1}. For each x ∈ V (G′) let Gx be an arbitrary (non-edge-coloured)
graph with the following four properties:

P1 {xq : q ∈ χ(x)} ⊆ V (Gx);
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P2 Gx has a perfect matching;

P3 For each p 6= q ∈ χ(x), if the graph Gx − {xp, xq} is not empty, it has a
perfect matching;

P4 For each set L ⊆ χ(x) with at least 3 elements; if the graph Gx − {xl :
l ∈ L} is not empty, it has no perfect matching.

Each Gx with the properties P1-P4 is called a P-gadget. Let us consider
the following three P-gadgets; the first two are known in the literature and
the third one is new.

1. One P-gadget is due to Szeider [19]:

V (Gx) = {xi, x
′
i : i ∈ χ(x)} ∪ {x′′a, x′′b} and

E(Gx) = {x′ix′′a, x′ix′′b , xix
′
i : i ∈ χ(x)} ∪ {x′′ax′′b}.

We will call this the SP-gadget.

2. Another gadget is due to Bang-Jensen and Gutin [4]:

V (Gx) = {xj : j ∈ χ(x)} ∪ {yj : j ∈ χ(x) \ {m,M}},
where m = min χ(x), M = maxχ(x), and

E(Gx) = {xjyk : j ∈ χ(x), k ∈ χ(x)\{m,M}}∪{xjxk : j 6= k ∈ χ(x)}.
We will call this the BJGP-gadget.

3. The following new gadget is a sort of crossover of the above two and
is called the XP-gadget:

V (Gx) = {xj : j ∈ χ(x)} ∪ {yj : j ∈ χ(x) \ {m,M}},
where m and M are defined above, and

E(Gx) = {xmxM} ∪ {xjyj , xmyj , xMyj : j ∈ χ(x) \ {m,M}}.

It is not difficult to verify that the tree P-gadgets indeed satisfy P1-P4.
Let z = χ(x). Observe that the SP-gadget has 2z + 2 vertices and 3z + 1
edges, the BJGP-gadget 2z−2 vertices and z(3z−5)/2 edges, the XP-gadget
2z − 2 vertices and 3z − 5 edges. Thus, the XP-gadget has the minimum
number of vertices and edges among the three P-gadgets. It is not difficult
to verify that the XP-gadget has the minimum number of vertices and edges
among all possible P-gadgets for z = 2, 3, 4. Perhaps, this is true for any z.

Conjecture 3.1. The XP-gadget has the minimum number of vertices and
edges among all possible P-gadgets for every z ≥ 2.

We will see in the next section why minimizing the numbers of vertices
and edges in P-gadgets is important for speeding up some algorithms on
edge-coloured multigraphs.
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4 P-gadget Graphs

Let G be a c-edge-coloured multigraph and let Gx be a P-gadget for x ∈
V (G′). The graph G∗ is defined as follows: V (G∗) = ∪x∈V (G′)V (Gx) and
E(G∗) = E1 ∪ E2, where E1 = ∪x∈V (G′)E(Gx) and E2 = {yqzq : y, z ∈
V (G′), yz ∈ E(G), χ(yz) = q, 1 ≤ q ≤ c}.

Let s, t be a pair of distinct vertices of G and let H = G − {s, t}. Let
G∗∗ be constructed from H∗ by adding s and t and edges E3 = {sxi : sx ∈
E(G), χ(sx) = i} ∪ {txi : tx ∈ E(G), χ(tx) = i}.

We will denote the number of vertices and edges in multigraphs G, G∗

and G∗∗ by n,m, n∗, m∗, n∗∗ and m∗∗, respectively.
The following result relates perfect matchings of G∗ with PC cycle sub-

graphs of G. PC cycle subgraphs are important in several problems on edge-
coloured multigraphs (for example, for the PC Hamilton cycle problem de-
scribed in Section 6), see [6]. Recall that G′ = G−{x ∈ V (G) : |χ(x)| = 1}.
Theorem 4.1. Let G be a connected edge-coloured multigraph such that G′

is non-empty. Then G has a PC cycle subgraph with r edges if and only if
G∗ has a perfect matching with exactly r edges in E2.

Proof: Let M be a perfect matching of G∗ with exactly edges

x1
p1

y1
q1

, . . . , xr
pr

yr
qr

in E2. For a vertex x of G′, let Qx be the set of edges in E2 adjacent to Gx.
By P2, each Gx has even number of vertices (x ∈ V (G′)) and since M is a
perfect matching in G∗, there is even number of edges in Qx. By P4, Qx

has either no edges or two edges for each x ∈ V (G′). Let X be the set of all
vertices x ∈ V (G′) such that |Qx| = 2. Then, by the definition of G∗, G〈X〉
contains a PC cycle factor. It remains to observe that |X| = r.

Now let F be a PC cycle subgraph of G with r edges. Observe that the
edges of F correspond to a set Q of r independent edges of G∗ and that
either no edges or two edges of Q are adjacent to Gx for each x ∈ V (G′).
Now delete the vertices adjacent with Q from each Gx and observe that
each remaining non-empty gadget has a perfect matching by P2 and P3.
Combining the perfect matchings of the non-empty gadgets with Q, we get
a perfect matching of G∗ with exactly r edges from E2.

The first part of the next assertion generalizes a result from [4]. The
second part is based on an approach which leads to a more efficient algorithm
than in [2].

Corollary 4.2. One can check whether an edge-coloured multigraph G has
a PC cycle and, if it does, find a maximum PC cycle subgraph of G in time
O(n∗ · (m∗ + n∗ log n∗)). Moreover one can find a shortest PC cycle in G in
time O(n · n∗ · (m∗ + n∗ log n∗)).
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Proof: We may assume that G is connected and that G′ is not empty.
By Theorem 4.1, it is enough to find a perfect matching of G∗ containing
the maximum number of edges from E2. Assign weight 0 (1, respectively) to
edges of G∗ in E1 (E2, respectively). Now we need to find a maximum weight
perfect matching of G∗ which can be done in time O(n∗ · (m∗ + n∗ log n∗))
by a matching algorithm in [13].

To find a shortest PC cycle in G, choose a vertex x ∈ V (G′). We will
find a shortest PC cycle in G traversing x. By Theorem 4.1, it is enough to
find a perfect matching of G∗ containing the minimum number of edges from
E2 while containing at least one edge from E2 so that the corresponding PC
cycle in G should be non-trivial. We define the weights on edges of G∗ as
follows. Assign M , where M is a sufficiently large number, to each edge in
E2 incident with Gx. For all other edges, assign weight 1 (0, respectively) to
edges of G∗ in E1 (E2, respectively). A maximum weight perfect matching of
G∗ contains exactly two edges of weight M by P4, and contains the minimum
number of edges in E2. Finding a maximum weight perfect matching of G∗

can be done in time O(n∗ · (m∗ + n∗ log n∗)) and we iterate the process for
each x ∈ V (G′).

The proof of the following result is analogous to the proof of Theorem
4.1.

Theorem 4.3. Let G be an edge-coloured multigraph and let s, t be a pair
of distinct vertices of G. If G∗∗ is non-empty, then G has a PC 1-path-cycle
subgraph with r edges in which the path is between s and t if and only if G∗∗

has a perfect matching with exactly r edges not in E1.

The next assertion generalizes a result from [2].

Corollary 4.4. Let G be an edge-coloured multigraph. One can check
whether there is a PC (s, t)-path in G in time O(m∗∗) and if G has one,
a shortest PC (s, t)-path can be found in time O(n∗∗ · (m∗∗ + n∗∗ log n∗∗)).

Proof: Let L be a graph. Given a matching M in L, a path P in L
is M−augmenting if, for any pair of adjacent edges in P , exactly one of
them belongs to M and the first and last edges of P do not belong to M .
Consider a perfect matching M of H∗, where H = G − {s, t}, which is a
collection of perfect matchings of Gx for all x ∈ V (G′). The existence of
a perfect matching in Gx is guaranteed by P2. Observe that G has a PC
(s, t)-path if and only if there is an M−augmenting (s, t)-path P in G∗∗.
Since an M−augmenting path P can be found in time O(m∗∗) (see [20]), we
can find a PC (s, t)-path in G, if one exists, in time O(m∗∗).

To find a shortest PC (s, t)-path, we assign each edge in
⋃

x∈V (G′) E(Gx)
weight 0 and every other edge of G∗∗ weight 1. Observe that a minimum
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weight perfect matching Q in the weighted G∗∗ corresponds to a shortest
PC (s, t)-path. Finding a minimum weight perfect matching can be done in
time O(n∗∗ · (m∗∗ + n∗∗ log n∗∗)).

5 Long PC Cycles and Paths

The following interesting result and conjecture were obtained by Aboue-
laoualim, Das, Fernandez de la Vega, Karpinski, Manoussakis, Martinhon
and Saad [1].

Theorem 5.1. [1] Let G be a c-edge-coloured multigraph G with n vertices
and with δmon(G) ≥ dn+1

2 e. If c ≥ 3 or c = 2 and n is even, then G has a
Hamilton PC cycle. If c = 2 and n is odd, then G has a PC cycle of length
n− 1.

Conjecture 5.2. [1] Theorem 5.1 holds if we replace δmon(G) ≥ dn+1
2 e by

δmon(G) ≥ dn
2 e.

We cannot replace δmon(G) ≥ dn+1
2 e by δmon(G) ≥ dn−1

2 e due to the
following example. Let H1 and H2 be c-edge-coloured complete multigraphs
(for each pair x, y of vertices and each i ∈ {1, 2, . . . , c} and j ∈ {1, 2}, Hj

has a edge between x and y of colour i) of order p + 1 that have precisely
one vertex in common. Clearly, a longest PC cycle in H1 ∪H2 is of length
p + 1.

Since the longest PC path problem is NP-hard, it makes sense to study
lower bounds on the length of a longest PC path. The following result was
proved by Abouelaoualim et al. [1].

Theorem 5.3. Let G be a c-edge-coloured graph of order n with δmon(G) =
d ≥ 1. Then G has a PC path of length at least min{n− 1, 2b c

2cd}.
The authors of [1] raised the following two conjectures.

Conjecture 5.4. Let G be a c-edge-coloured graph of order n and let d =
δmon(G) ≥ 1. Then G has a PC path of length at least min{n− 1, 2cd}.

They also conjectured the following analog of Theorem 5.3 for multi-
graphs:

Conjecture 5.5. Let G be a c-edge-coloured multigraph of order n with
δmon(G) = d ≥ 1. Then G has a PC path of length at least min{n− 1, 2d}.

6 Longest PC Cycles and Paths in Edge-Coloured
Complete Graphs

Let Kc
n denote a c-edge-coloured complete graph with n vertices.

Feng, Giesen, Guo, Gutin, Jensen and Rafiey [12] proved the following:
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Theorem 6.1. A Kc
n (c ≥ 2) has a PC Hamilton path if and only if Kc

n

contains a PC spanning 1-path-cycle subgraph.

This theorem was first proved by Bang-Jensen and Gutin [4] for the case
c = 2 and they conjectured that Theorem 6.1 holds for each c ≥ 2. Theorem
6.1 implies that the maximum order of a PC path in Kc

n equals the maximum
order of a PC 1-path-cycle subgraph of Kc

n.
As a result, the problem of finding a longest PC path in Kc

n is polynomial-
time solvable for arbitrary c ≥ 2. To see that a PC 1-path-cycle subgraph of
Kc

n can be found in polynomial time, add a pair x, y of new vertices to Kc
n

together with all edges needed to have a complete graph on n + 2 vertices.
Let the colour of all edges between x and y, and Kc

n be c + 1 and let the
colour of xy be c+2. Observe that the maximum order of a PC 1-path-cycle
subgraph of Kc

n is less by exactly two than the maximum order of a PC
cycle subgraph of the c + 2-edge-coloured complete graph described above.
It remains to apply Corollary 4.2.

The problem of finding a longest PC cycle Kc
n has not been solved yet

for c ≥ 3 as we will see below. For c = 2, Saad [17] found a characterization
for longest PC cycles using the following notions. A pair of distinct vertices
x, y of G are colour-connected if there exist PC (x, y)-paths P and Q such
that χ(fP ) 6= χ(fQ) and χ(`P ) 6= χ(`Q), where fP and fQ are the first edges
of P and Q, respectively, and `P and `Q are the last edges of P and Q,
respectively. We say that G is colour-connected if every pair of distinct
vertices of G is colour-connected. Saad’s characterization is as follows.

Theorem 6.2. The length of a longest PC cycle in a colour-connected K2
n

is equal to the maximum order of a PC cycle subgraph of K2
n.

Colour-connectivity for Kc
n is an an equivalence relation (see [6]). Using

Theorem 6.2, Saad [17] showed that the problem of finding a longest PC
cycle in K2

n has a polynomial-time randomized algorithm. Using a special
case of Corollary 4.2, Bang-Jensen and Gutin [5] proved that the problem
is, in fact, polynomial-time solvable. Theorem 6.2 implies the following:

Corollary 6.3. [17] A K2
n has a PC Hamilton cycle if and only if K2

n is
colour-connected and contains a PC cycle factor.

There is another characterization of K2
n with a PC Hamilton cycle due to

Bankfalvi and Bankfalvi, see [6]. The straightforward extension of Corollary
6.3 is not true for any c ≥ 3 [6]. In fact, no characterization of Kc

n with a
PC Hamilton cycle is known for any fixed c ≥ 3 and it is a very interesting
problem to obtain such a characterization. Even the following problem by
Benkouar, Manoussakis, Paschos and Saad [8] is still open.

Problem 6.4. Determine the complexity of the PC Hamilton cycle problem
for c-edge-coloured complete graphs when c ≥ 3.
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We conjecture that the PC Hamilton cycle problem for c-edge-coloured
complete graphs when c ≥ 3 is polynomial-time solvable.

In absence of characterization of Kc
n with a PC Hamilton cycle, sufficient

conditions are interest. Manoussakis, Spyratos, Tuza and Voigt [16] proved
the next result.

Proposition 6.5. If c ≥ 1
2(n − 1)(n − 2) + 2, then every Kc

n has a PC
Hamilton cycle.

Let ∆mon(Kc
n) denote the largest monochromatic degree of Kc

n. Bollobás
and Erdős [9] posed the following:

Conjecture 6.6. Every Kc
n with ∆mon(Kc

n) ≤ bn/2c−1 has a PC Hamilton
cycle.

Improving some previous results on this conjecture, Shearer [18] showed
that if 7∆mon(Kc

n) < n, then Kc
n has a PC Hamilton cycle. So far, the best

asymptotic estimate was obtained by Alon and Gutin [3].

Theorem 6.7. [3] For every ε > 0 there exists an n0 = n0(ε) so that for
each n > n0, every Kc

n satisfying ∆mon(Kc
n) ≤ (1− 1√

2
− ε)n contains a PC

Hamilton cycle.
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