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Outline:

• The Max CSP problem

• Tools: Latties, supermodularity, implementations, and ores

• Results and open questions:� |D| = 3� non-distributive latties� single-prediate Max CSP� Max CSP with all onstants (x = 0, x = 1,. . . )



Basis

D � a �nite set with |D| > 1 (the domain)
R

(m)
D = {f | f : Dm → {0,1}} � the set of all m-ary prediates

RD =
⋃∞

m=1 R
(m)
DDe�nition: A onstraint over a set of variables V = {x1, x2, . . . , xn}is an expression of the form f(x) where

f ∈ R
(m)
D is the onstraint prediate; and

x = (xi1, . . . , xim) is the onstraint sope.The onstraint f(x) is said to be satis�ed on a tuple a = (ai1, . . . , aim) ∈

Dm if f(a) = 1.



Max CSPA olletion C = {f1(x1), . . . , fm(xm)} of onstraints over V =

{x1, . . . , xn};eah onstraint fi(xi) has a weight αi ∈ N.Find an assignment φ : V → D that maximizes the total weightof satis�ed onstraints; in other words, maximize the funtion

f : Dn → N, de�ned by
f(x1, . . . , xn) =

m∑

i=1

αi · fi(xi).



Parameterization of Max CSPFor a �nite set of prediates Γ ⊆ RD, Max CSP(Γ) is the set ofMax CSP instanes where all onstraint prediates belong to Γ.We say that Γ is a onstraint language.



ExampleIn the Max k-Cut problem, one is given an edge-weighted graph,and the goal is to divide it into k parts so as to maximize thetotal weight of edges between di�erent parts.Let neqk be the disequality prediate on {0, . . . , k − 1}, that is,

neqk(x, y) = 1 i� x 6= y. Then Max k-Cut ≡ Max CSP({neqk}).



ApproximationPO is the lass of optimization problems that an be solved tooptimality in polynomial time.APX is the lass of optimization problems that an be optimized(in polynomial time) within some onstant c > 1:

OPT(I)

c
≤ m(A(I)) ≤ c · OPT(I)

Max CSP(Γ) an be approximated within |D|a where a is themaximum arity of prediates in Γ.



A problem S is APX-omplete if every problem in APX an be
AP -redued to S.If S is APX-omplete and P 6= NP, then
• there exists a onstant c > 0 suh that S is not c-approximable;

• S does not admit a polynomial-time approximation sheme;

• it is NP-hard to solve S exatly.

Max CSP({neqk}) is APX-omplete.



Classi�ation when |D| = 2[Creignou℄ [Khanna, Sudan, Williamson℄Let Γ be a onstraint language over {0,1}. Max CSP(Γ) ∈ POif and only if

• Γ is 0-valid; or

• Γ is 1-valid; or
• Γ is 2-monotone.

Otherwise, Γ is APX-omplete.



A prediate f : {0,1}n → {0,1} is 2-monotone if f an be ex-pressed as follows:

f(x1, . . . , xn) = 1

⇐⇒

(xi1 ∧ . . . ∧ xis) ∨ (¬xj1 ∧ . . . ∧ ¬xjt)

Both disjunts are not required to ontain literals.



Tools
• Latties and supermodularity
• Strit implementations
• Cores



LattiesA lattie L is a partial order in whih any a, b ∈ L have
• a least ommon upper bound (join) a ⊔ b, and
• a greatest ommon lower bound (meet) a ⊓ b



A hain is a totally ordered lattie.A lattie is alled distributive i� it an be represented by sub-sets of a set, with lattie operations interpreted as union andintersetion.



Supermodular funtions/prediatesLet L be a lattie order on D. We say that an n-ary funtion

f : Dn → R is supermodular on L if
f(x) + f(y) ≤ f(x ⊓ y) + f(x ⊔ y) for all x,y ∈ Dn,where ⊔ and ⊓ at point-wise.



1

a

b
c

0

f(a) = f(b) = f(c) = 1

f(0) = f(1) = 0

f(a) + f(c) = 2 6≤ f(a ⊓ c) + f(a ⊔ b) = f(0) + f(1) = 0



1

a

b
c

0

f(a) = f(b) = 1

f(c) = f(0) = f(1) = 0

f(a) + f(c) = 1 6≤ f(a ⊓ c) + f(a ⊔ b) = f(0) + f(1) = 0



1

a

b
c

0

f(a) = f(b) = f(0) = f(1) = 1

f(c) = 0

x, y ∈ {a, b,0,1}

f(x) + f(c) = 1 ≤ f(x ⊓ c) + f(x ⊔ c) = f(0) + f(1) = 2

f(x) + f(y) = 2 ≤ f(x ⊓ y) + f(x ⊔ y) = f(x) + f(y) = 2

f(c) + f(c) = 0 ≤ f(c ⊓ c) + f(c ⊔ c) = f(c) + f(c) = 0



More examplesEvery 2-monotone prediate is supermodular on 0 → 1.Every unary prediate is supermodular on every hain.



Max CSP and supermodularityFat. If f1 and f2 are supermodular prediates on L,then α · f1 + β · f2, α, β ≥ 0, is supermodular on L.Theorem. [Shrijver℄Let L be a distributive lattie order on a �nite set D. A funtion

f : Dn → R that is supermodular on L an be maximized inpolynomial time, if f and L satisfy some mild restritions.



Let α1, . . . , αm ≥ 0. If prediates f1, . . . , fm are supermodular on

L, then so is

f(x1, . . . , xn) =
m∑

i=1

αi · fi(xi).



Max CSPA olletion C = {f1(x1), . . . , fm(xm)} of onstraints over V =

{x1, . . . , xn};eah onstraint fi(xi) has a weight αi ∈ N.Find an assignment φ : V → D that maximizes the total weightof satis�ed onstraints; in other words, maximize the funtion

f : Dn → N, de�ned by
f(x1, . . . , xn) =

m∑

i=1

αi · fi(xi).



Theorem. [Cohen, Cooper, Jeavons, Krokhin℄If L is a distributive lattie and Γ onsists of supermodular pred-iates on L, then Max CSP(Γ) is in PO.



Strit implementationsDe�nition. Let Y = {y1, . . . , ym} and Z = {z1, . . . , zn} be twodisjoint sets of variables. Let g1(y1), . . . , gs(ys), s > 0, be on-straints over Y ∪ Z. If g(y1, . . . , ym) is a prediate suh that theequality

g(y1, . . . , ym) = max
Z

s∑

i=1

gi(yi) − αis satis�ed for all y1, . . . , ym, and some �xed α > 0, then g is saidto be stritly implemented from {g1, . . . , gs}.Lemma. If a prediate g an be stritly implemented from Γand Max CSP(Γ∪{g}) is APX-omplete then so is Max CSP(Γ)



How to stritly implement eq2 with neq2:
eq2(x, y) = max

z
(neq2(x, z) + neq2(y, z)) − 1

If x = y = 1, then let z = 0. Result: 1If x = y = 0, then let z = 1. Result: 1If x 6= y, then let z = 0 (or z = 1). Result: 0



CoresDe�nition. An endomorphism of Γ is a unary operation γ on Dsuh that

f(a1, . . . , am) = 1 ⇒ f(γ(a1), . . . , γ(am)) = 1for all f ∈ Γ and all (a1, . . . , am) ∈ Dm. We will say that Γ is aore if every endomorphism of Γ is injetive (i.e. a permutation).Intuition. If Γ is not a ore then Max CSP(Γ) redues to a simi-lar problem over a smaller domain obtained by removing elementsnot in image(γ).



Fat. For |D| = 2, Γ is not a ore i� there is a ∈ D suh that

f(a, . . . , a) = 1 for all f ∈ Γ. In this ase Max CSP(Γ) is trivial.



Classi�ation when |D| = 2 (version 2)Let Γ be a onstraint language over {0,1} and assume (withoutloss of generality) that Γ is a ore. Then, Max CSP(Γ) ∈ POif and only if Γ is supermodular on 0 → 1. Otherwise, Γ isAPX-omplete.



Results and open questions
• |D| = 3

• Non-distributive latties
• Single-prediate Max CSP
• Constraint languages that ontain all onstants



Classi�ation when |D| = 3[Jonsson, Klasson, Krokhin℄Let Γ be a onstraint language over {0,1,2} and assume (withoutloss of generality) that Γ is a ore. Then, Max CSP(Γ) ∈ POif and only if Γ is supermodular on some hain over {0,1,2}.Otherwise, Γ is APX-omplete.The proof has many similarities with the proof for onstraintlanguages with all onstants.



Open question:What is the omplexity/approximability of Max CSP(Γ) when

|D| > 3?



Hypothesis

Classi�ation when |D| = k > 3

Let Γ be a onstraint language over {0, . . . , k − 1} and assumethat Γ is a ore. Then, Max CSP(Γ) ∈ PO if and only if Γis supermodular on some distributive lattie over {0, . . . , k − 1}.Otherwise, Γ is APX-omplete.



There exist onstraint languages Γ that are supermodular on

but not on any distributive lattie [Krokhin, Larose℄.



Theorem. [Krokhin, Larose℄If Γ onsists of prediates that are supermodular on the k-diamond, then Max CSP(Γ) is in PO.The algorithm runs in O(n3) and it is inspired by algorithms forthe Min Cut/Max Flow problem.



If V,W are lasses of latties, then V ◦ W onsists of all latties
L suh that there is a ongruene θ on L with the followingproperties:

• the ongruene lattie L/θ ∈ W; and
• every θ-lass is a lattie in VTheorem. [Krokhin, Larose℄Suppose that V,W are �nite lasses of �nite latties. If super-modular optimization over V andW is in PO, then supermodularoptimization over V ◦ W is in PO, too.Corollary.If Γ onsists of prediates that are supermodular on the pen-tagon, then Max CSP(Γ) is in PO.



Let Γ be a ore.

Open question:Is Max CSP(Γ) ∈ PO whenever Γ is supermodular on somelattie?
Open question:Is Max CSP(Γ) APX-omplete whenever Γ is not supermodularon any lattie?



Open question:Assume that Γ is supermodular on
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Is Max CSP(Γ) in PO?



Complexity of single-prediate Max CSP[Jonsson, Krokhin℄Let f : Dn → {0,1} be a prediate suh that n > 1.Max CSP({f}) is in PO if and only if there exists a d ∈ D suhthat f(d, . . . , d) = 1. Otherwise, Max CSP({f}) is NP-omplete.This is proved by two indution proofs. In the �rst part, it isassumed that f is binary and the indution is over |D|; oresplay an important r�le in the proof. In the seond part, theindution is over the arity of f ; the main idea is to onstrutstrit implementations that redue the arity of prediates.



Open question:Is Max CSP({f}) APX-omplete whenever Max CSP({f}) is NP-omplete?



Constraint languages ontaining all onstantsGiven a �nite set D′, we de�ne the prediate uD′ suh that
uD′(x) = 1 ⇐⇒ x ∈ D′.

Let Γ be a onstraint language over domain D = {0, . . . , d − 1}.

Γ ontains all onstants if {u{0}, . . . , u{d−1}} ⊆ Γ.Note: Γ is a ore (the identity is the only endomorphism).



Theorem. [Deineko, Jonsson, Klasson, Krokhin℄Let Γ be a onstraint language that ontains all onstants. Then,Max CSP(Γ) ∈ PO if and only if Γ is supermodular on somehain. Otherwise, Max CSP(Γ) is APX-omplete.



Every hain is a distributive lattie so we only need to prove thehardness part: Consequently, we assume that Γ is not supermod-ular on any hain over D.Step 1. For every D′ ⊆ D, the prediate uD′ an be stritly im-plemented by Γ. Heneforth, we assume that all unary prediatesare in Γ.Step 2. Γ ontains all unary prediates. Then, Γ an stritlyimplement a onstraint language Γ′ suh that Γ is not super-modular on any hain and every prediate in Γ′ is at most binary.[Burkard, Klinz, Rudolf℄



Step 3. If Γ is not supermodular on any hain, then there exists
D′ ⊆ D suh that

• |D′| ≤ 4; and

• Γ|D′ is not supermodular on any hain.

The proof is inspired by how the COM-algorithm works [Deineko,Rudolf, Woeginger℄.



Is there an AP -redution from Max CSP(Γ|D′) to Max CSP(Γ)?



However:Max CSP(Γ|D′)-B AP -redues to Max CSP(Γ)-B.Strit implementations inrease the degrees of variables, but nottoo muh.



Step 4. If Γ is not supermodular on any hain, then there existsa subset Γ′ ⊆ Γ suh that

• |Γ′| ≤ 3; and

• Γ′ is not supermodular on any hain.



By steps 1-4, we now have a onstraint language Γ′ satisfyingthe following properties:

• Γ′ = {f1, f2, f3} where fi : {0,1,2,3}2 → {0,1};
• Γ′ is not supermodular on any hain;
• Max CSP(Γ′)-B AP -redues to Max CSP(Γ)-B.



By a omputer-generated enumeration of strit implementations,it turns out that some prediate 6=E with |E| = 2 an be stritlyimplemented by every possible Γ′.It is known that Max CSP(6=E)-3 is APX-omplete [Alimonti,Kann℄ whih onludes the proof.



Open questionIs there an elegant way of proving the previous result withoutusing omputer-assisted ase analyses?
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