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Refactoring is the process of changing the way a program works without changing its overall behaviour. The
functional programming paradigm presents its own unique challenges to refactoring. For the OCaml language
in particular, the expressiveness of its module system makes this a highly non-trivial task. The use of PPX
preprocessors, other language extensions, and idiosyncratic build systems complicates matters further.

We begin to address the question of how to refactor large OCaml programs by looking at a particular
refactoring—value binding renaming—and implementing a prototype tool to carry it out. Our tool, Rotor, is
developed in OCaml itself and combines several features to manage the complexities of refactoring OCaml

code. Firstly it defines a rich, hierarchical way of identifying bindings which distinguishes between structures
and functors and their associated module types, and is able to refer directly to functor parameters. Secondly it
makes use of the recently developed visitors library to perform generic traversals of abstract syntax trees.
Lastly it implements a notion of ‘dependency’ between renamings, allowing refactorings to be computed in
a modular fashion. We evaluate Rotor using a snapshot of Jane Street’s core library and its dependencies,
comprising some 900 source files across 80 libraries, and a test suite of around 3000 renamings.

We propose that the notion of dependency is a general one for refactoring, distinct from a refactoring
‘precondition’. Dependencies may actually be mutual, in that all must be applied together for each one
individually to be correct, and serve as declarative specifications of refactorings. Moreover, refactoring
dependency graphs can be seen as abstract (semantic) representations.
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1 INTRODUCTION

Refactoring is a necessary and ongoing process in both the development and maintenance of
any codebase [Fowler et al. 1999]. Individual refactoring steps are often conceptually very simple
(e.g. rename this function from foo to bar, swap the order of parameters x and y). However applying
them in practice can be complex, involving many repeated but subtly varying changes across the
entire codebase. Moreover, refactorings are, by and large, context sensitive, meaning that even
powerful low-tech utilities (e.g. grep and sed) are only effective up to a point.
Take as an example the renaming of a function, which is the refactoring that we focus on in

this paper. As well as renaming the function at its definition point, every call of the function
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must also be renamed (i.e. many repeated changes). In OCaml [Minsky et al. 2013], the language
targeted by our work, the function identifier may be used as a punned argument in which case an
argument label must be introduced by the renaming (i.e. subtly varying changes). Additionally,
scoping must be taken into account: not all occurrences of the string corresponding to the old name
should necessarily be replaced (i.e. renaming is context-sensitive). These aspects make performing
refactoring by hand and reviewing the resulting changes tedious and error-prone. It is clear that
refactoring-oriented, language-aware tool support can therefore provide major improvements in
productivity during the refactoring process, as well as during code review after the refactoring has
been performed.
Although some tools provide limited support for localised refactoring tasks (e.g. merlin can

rename an identifier within a given source file), there is currently no general purpose automatic
refactoring tool for the OCaml language. Our goal is develop such a tool, and we have begun by
implementing a prototype, named Rotor,1 which supports renaming of value bindings (i.e. both
the identifier used at the definition site, as well as all call site identifiers) across an entire codebase.
Whilst ostensibly very simple, this already presents the significant challenges that we expect to
feature in most, if not all, refactoring tasks for OCaml. Thus, we believe our approach provides a
generic foundation for implementing further refactorings.

TheOCaml language itself has a number of features that present unique challenges for refactoring
tools. These include its expressive module system, as well as its tooling and build ecosystem. We
summarise these challenges in Section 2. To manage the complexities of renaming inOCaml, Rotor
implements two novel solutions that enable it to break a top-level renaming task into a number of
compositional, and manageable, subtasks.

Rich, hierarchical identifiers. The OCaml compiler provides datatypes for identifiers, in the
Longident and Path modules, that capture the basic notion of hierarchy in OCaml programs.
However the representations implemented by these datatypes do not contain enough information
to distinguish the sort of each element (i.e. module, signature, value). Thus, to refer unambiguously
to all the different elements that may have to undergo renaming, Rotor defines a richer datatype
for identifying the subcomponents of an OCaml program. We give details of this datatype, as well
as the design and implementation of Rotor more generally, in Section 5.

Subsidiary refactorings and dependencies. In the process of renaming a binding specified
by the user, we often find that other bindings must be renamed as a consequence. One example of
when this happens is on encountering an include of the binding’s parent module(s) within another
module. We examine the different possible situations in Section 3. By transitively computing the
set of such ‘induced’ renamings, Rotor breaks a single monolithic renaming into a number of
smaller, more straightforward subtasks. In general we may say that a renaming depends upon these
other renamings that it induces, in the sense that the latter must all be applied in order for the
former to be correct. We argue that this concept can be extended beyond renaming, to refactoring
more generally. Moreover, our notion of refactoring dependency is distinct from the the notion of
refactoring precondition introduced by Opdyke [1992], since dependencies may be mutual and have
distinct footprints on the codebase as changesets.

We propose treating sets of refactoring dependencies as first-class objects of study. For example,
they can be seen as declarative specifications of the action of a refactoring upon a given codebase.
Furthermore, the set of renaming dependencies of all bindings in a given program can be viewed as
an abstraction of the program itself. We also believe that this declarative view of refactoring will
work equally well for other languages and paradigms, and thus the contribution of this paper is

1Reliable OCaml Tool for OCaml Refactoring.
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Towards Large-scale Refactoring for OCaml :3

not just to refactoring OCaml, but to refactoring in general. We explore the concept of refactoring
dependencies in more detail in Section 4.

In summary, this paper makes the following contributions.
(1) We develop the first tool for performing a large scale refactoring over a whole OCaml

codebase, and evaluate it on an extensive real world example.
(2) We provide a generic framework in which further refactorings can be developed.
(3) We identify a novel abstract concept within the refactoring literature—that of refactoring

dependencies—and propose it as general mechanism for specifying and presenting the action
of a refactoring upon a codebase.

The rest of the paper is organised as follows. In Section 2 we survey the features of the OCaml

language which present particular problems in the context of refactoring. Section 3 then presents
a number of examples which illustrate these challenges and motivate our general treatment of
refactoring for OCaml. In Section 4 we elaborate our novel concept of refactoring dependencies
before describing the design and implementation of our prototype tool, Rotor, in Section 5, with
particular emphasis on the features that provide a general framework for large-scale refactoring in
OCaml. Section 6 then presents a case study in which we have applied Rotor to a large codebase
consisting of a number of the Jane Street [2018] public OCaml libraries. Finally, Section 7 surveys
related work and in Section 8 we conclude and discuss future work.

2 CHALLENGES IN REFACTORING OCAML

Many features of the OCaml language present unique, idiosyncratic challenges for refactoring.
Perhaps foremost of these is its rich module system, which lifts many concepts found at the function
level. For example, structures and functors may be taken to correspond, respectively, with ground
values and functions: modules may have recursive definitions and functors may be higher-order,
i.e. taking other functors as arguments, returning them as results, or both. Types for modules may
be: independently declared; bound to (module type) identifiers; subject to further type constraints;
and used as annotations that trigger compiler checks—mirroring the treatment of types for ordinary
values. To push the analogy a little further, a structure (type) itself is most like a record (type) in
that it may have subcomponents; and these may themselves be modules or module types, allowing
complex hierarchies to be built.
These language features endow OCaml with a kind of self-similarity property, meaning many

issues that would only appear at a ‘whole-program’ level in other languages can already appear
within a single file OCaml program. Rich, hierarchical module systems like OCaml’s are not found
in other functional languages, such as Haskell [Peyton Jones 2003] or Erlang [Armstrong et al.
1996]. In some ways, OCaml’s module system is more akin to the use of objects, (generic) classes
and interfaces in object-oriented languages. Of course, we note that OCaml also contains a ‘true’
object-oriented subset and so challenges specific to refactoring object-oriented code will also apply
to OCaml, possibly interacting with its functional aspects in interesting ways that we have not
yet considered. Notwithstanding, although Rotor does not yet address refactorings specific to
the object-oriented part of the language, OCaml’s object-oriented features do not interfere with
renamings of the functional components.
OCaml’s module system also incorporates other features that go beyond the lifting of simple

functional concepts. For one, the include keyword allows (a subset of) the bindings of one module
to be taken wholesale and re-exported as bindings defined, at the point of inclusion, by the including
module. This can have far-reaching consequences for renaming a given binding within a large
codebase, which can thus cascade into a number of different renamings through includes of the
binding’s parent module(s) within other modules. These other renamings may also cascade similarly,

2018-05-22 14:04. Page 3 of 1–29. , Vol. 1, No. 1, Article . Publication date: May 2018.
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quickly resulting in a blow-up. Modules (and module types) can also be aliased, and so a renaming
within the aliased module cascades into a renaming within the aliasing module, and vice versa.

Two further language extensions present different challenges (which Rotor does not yet handle)
by introducing tighter couplings between the various subsystems of the language than are present
in core OCaml. Firstly, module type extraction permits a module expression to stand for its module
type as inferred by the compiler. This means that a module type expression may contain a module
expression as a subcomponent; in core OCaml module expressions can contain module types, but
not vice versa. Secondly, first class modules permit wrapping module expressions up as values that
can be passed to or returned from functions; correctly performing refactoring in the presence of
this language extension may require additional data-flow analysis.

Whilst the main challenge in developing a refactoring tool for the OCaml language has been the
complexity of the module system, Rotor must also work around certain issues arising from the
build infrastructure and wider language ecosystem in order to function effectively as a practical
tool over large codebases. Firstly, the PPX preprocessor infrastructure [Leroy et al. 2017, Chap. 27]
provides a standard syntax for specifying where preprocessors may insert or replace original source
code with automatically generated code, along with a plugin architecture for applying them.2 The
use of PPX preprocessors is becoming ever more common and presents a fundamental challenge
for refactoring tools, which ultimately must associate the code that is actually compiled with
the source files as written and seen by the programmer. Second, Rotor must have knowledge of
any packaging strategies that are used to manage the codebase. For example, the jbuilder build
system creates libraries and associated namespaces by automatically transforming the identifiers
of top-level modules. Thus, for code compiled using jbuilder, Rotor must know how to map the
module identifiers it encounters back into the correct filesystem paths for locating the original
source files.

We have, in fact, implemented Rotor in the OCaml language itself. This has proved very useful
in ameliorating some of these ‘supra-lingual’ challenges since it allows existing software solutions
already in the ecosystem, as well as the compiler infrastructure, to be reused by and incorporated
into Rotor as libraries.

3 MOTIVATING EXAMPLES

In this section, we present some simple example programs that illustrate the surprising number of
complexities involved in renaming bindings in OCaml. We use them to motivate Rotor’s strategy
of dividing a renaming into logically separate subtasks, and our notion of dependencies between
refactorings that we explore further in Section 4 below.

3.1 Module Includes and Aliases

Modules can be included within other modules using the include keyword. This takes (a subset
of) the bindings in the included module and re-exports them as bindings defined, at the point of
inclusion, by the including module. For example, consider the program below.
1 module A = struct
2 let foo = 1
3 let bar = 2
4 let baz = 3
5 end

6 module B = struct
7 include
8 (A : sig val foo : int
9 val bar : int end)
10 val bar = 4
11 end ;;

12 A.foo + B.foo ;;
13 A.bar + B.bar ;;

2The previous incarnation of this infrastructure, camlp4, is now deprecated.
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The two modules A and B each define some integer value bindings, and then two expressions
composed of these bindings are evaluated. For simplicity, we have used bindings to integer values,
but the principles we describe apply to bindings of any type.

Module A includes module B, although notice that the include is restricted by an explicit module
type annotation so not all of A’s bindings are included. Moreover, the module B rebinds bar to a
new value. The program contains five distinct bindings: one for each of foo and bar in each of
the modules A and B, and baz in module A. What changes must be made to the program source to
rename each of them?

– To rename A.foo, we need to rename the identifier in the binding on line 2, as well as the
reference on line 12 and the binding declaration in the module type annotation at line 8.
However since the binding is also included in module B, which is then referred to on line 12,
we must also rename B.foo. Not doing so would result in a malformed program.

– Renaming B.foo requires renaming the reference to it on line 12. In contrast to A.foo, there
is no ‘local’ definition to be renamed since the binding definition is included from A. However,
this module include still requires A.foo to be renamed in order for the refactoring to result
in a valid program. That is, the two renamings are dependent on one another. Notice that
after applying both of these renamings, the behaviour of the program remains the same.

– When renaming A.bar, similarly to before, we rename the bound identifier on line 3, the
binding declaration on line 9, and the reference to the binding in the expression on line 13.
However in this case, even though the binding is included in module B, we do not need to
rename B.bar. This is because B rebinds bar, and so uses of the identifier B.bar refer to this
local binding in B. Thus, it has no dependency on A.bar. Renaming B.bar involves renaming
the identifier in the binding on line 10 and the identifier that references it on line 13.

– For the binding of baz in module A, we only need to rename the identifier in the binding on
line 4. Since there is no declaration for baz in the module type annotation for the include of
A in B, there is no need to perform a renaming of B.baz, since B contains no binding for baz.

Similar considerations for renaming arise from the use of module aliases, which allow one module
to reuse the implementation of another. The following program reproduces a set of dependencies
analogous to those illustrated above for module includes. Here, renamings of C.foo and D.foo are
dependent on one another, but module D does not contain a binding for bar because of the explicit
module type restriction on the alias.
1 module C = struct
2 let foo = 1
3 let bar = 2
4 end

5 module D = (C : sig val foo : int end) ;;
6 C.foo + D.foo ;;

3.2 Module Interfaces

In addition to modules, OCaml also allows module type expressions to be bound to identifiers,
which can then be used as module type annotations. This can potentially couple together changes
in many different modules across a codebase, if they all implement the same interface (i.e. named
module type).
Consider the program in Listing 1, which defines a module type Magma that encapsulates the

mathematical notion of a set with a binary operation. The module type also stipulates a way of
generating elements of the datatype. Additionally, it defines two concrete modules that implement
this interface and evaluates whether the magma operation of each one is commutative.

If we wanted to rename the op binding in either of modules M1 or M2, this would involve renaming
the identifier in the bindings on lines 8 and 14, respectively, as well as their references on lines 19

2018-05-22 14:04. Page 5 of 1–29. , Vol. 1, No. 1, Article . Publication date: May 2018.
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1 module type Magma = sig
2 type t
3 val op : t -> t -> t
4 val choose : unit -> t
5 end
6 module M1 : Magma = struct
7 type t = int
8 let op x y = x + y
9 let choose () =
10 Random.int (Random.bits ())
11 end

12 module M2 : Magma = struct
13 type t = float
14 let op x y = x - y
15 let choose () = Random.float
16 (float_of_int (Random.bits ()))
17 end ;;
18 let x,y = M1.(choose (), choose ())
19 in M1.(op x y = op y x) ;;
20 let x,y = M2.(choose (), choose ())
21 in M2.(op x y = op y x) ;;

Listing 1. An example program demonstrating the issues for renaming when using module interfaces.

and 21, respectively. However, in doing this we would also have to rename the declaration of op
in the Magma module type. If this is not also done, then after applying the renaming to M1 or M2
these modules would not be correctly implementing the Magma interface—they would be missing
a definition for op. So renaming M1.op or M2.op depends on renaming Magma.op. Conversely,
renaming Magma.op depends on renaming both M1.op and M2.op. Thus, renaming a binding in
any module implementing an interface (transitively) depends on renaming the binding in all such
modules, as well as in the interface itself.

3.3 Module Type Aliases and Includes

Similarly to the case for modules considered above, module types may be included within and
aliased by other module types, e.g.
22 module type Monoid = sig
23 include Magma
24 val zero : t
25 end

26 module type Groupoid = Magma

In the presence of these module type declarations, the renamings considered in Section 3.2 above
would also depend on renaming both Groupoid.op and Monoid.op. For these renamings, notice
that their footprints (the locations in the source code that must be modified) are empty since the
bindings are not defined locally to these module types. However, they themselves can be used as
interfaces and thus contribute to a further ‘cascade’ of dependencies on renaming other bindings
defined elsewhere in the codebase. This notion of a footprint, and how it relates to a general notion
of dependency for refactoring, is discussed in a more formalised way in Section 4.

3.4 Module Type Constraints

OCaml allows module types to be defined by modifying other module types in certain ways, for
example by applying equality constraints and (destructive) substitutions to its submodules. For
example, consider the following two module types.
1 module type S = sig
2 module M : sig val foo : int end
3 end

4 module type T =
5 S with module M = C

The module type T is defined by modifying S to specify that the submodule M is equal to the module
C, defined above in Section 3.1. If the binding C.foo is being renamed, we now must generate two
other dependent renamings. Firstly T.M.foo must be renamed and, as described above, this will

, Vol. 1, No. 1, Article . Publication date: May 2018. 2018-05-22 14:04. Page 6 of 1–29.
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also induce renamings for those modules whose interface is declared to be T. Secondly, because the
submodule M in the module type S also declares a binding for foo, this too must be renamed. That
involves renaming the identifier in the declaration on line 2, and will also induce further renamings
for modules implementing the interface S. On the other hand renaming C.bar, although depending
on renaming T.M.bar, should not induce a renaming of S.M.bar since there is no such binding.

Now consider the two module types below.

6 module type TestMagma = sig
7 module M : Magma
8 val idempotent : M.t -> bool
9 end

10 module type TestM1 =
11 TestMagma with module M := M1

TestM1 is bound to a module type defined by modifying TestMagma with a destructive substitution
of the module M1 for its submodule M. This means that the TestM1 module does not declare a
submodule M, but does contain all the other bindings declared in TestMagma with any references to
the substituted module M replaced by M1. In this case, it leaves only a declaration of the binding
idempotent with type M1.t -> bool. To carry out a renaming of M1.op, there is now also a
dependency on renaming TestMagma.M.op induced by the module substitution. However note
that because the substitution is destructive, the module type TestM1 does not declare a binding for
M.op. Thus there should not be a dependency on renaming TestM1.M.op.

3.5 Functors

The use of functors also propagates dependencies when renaming value bindings. Since functors
produce modules, which can be aliased, this can lead to having to rename bindings within functor
bodies. Indeed, functors themselves can also be aliased since they too are modules. Additionally,
renamings in modules that are used as an argument to a functor can induce renamings in other
modules that are also used as arguments to that functor.

For example consider the program below, which defines a functor that creates a string conversion
function for a pair from string conversion functions for each of its components. It is then used to
print out an axiom of Peano arithmetic.

1 module Int = struct
2 type t = int
3 let to_string i = int_to_string i
4 end

5 module String = struct
6 type t = string
7 let to_string s = s
8 end

9 module Pair (X : sig type t val to_string : t -> string end)
10 (Y : sig type t val to_string : t -> string end) = struct
11 type t = X.t * Y.t
12 let to_string (x, y) = X.to_string x ^ " " ^ Y.to_string y
13 end
14 module P = Pair(Int)(Pair(String)(Int)) ;;
15 print_endline (P.to_string (0, ("!=", 1))) ;;

Let us consider the chain of dependencies that are induced, and their footprints, by renaming
the P.to_string function.

– The module P is an alias of the result of applying the Pair functor; so as well as having to
rename the reference to P.to_string on line 15, we must also rename the identifier on line
12 in the binding defined in the body of the functor.

2018-05-22 14:04. Page 7 of 1–29. , Vol. 1, No. 1, Article . Publication date: May 2018.
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– Since the result of applying the Pair functor is itself used as the second argument to another
application of the functor, and the to_string binding is declared in the signature of the
corresponding parameter, we must also rename the binding in this functor parameter. The
footprint of this dependency is the declaration of the binding in the signature of the parameter
on line 10, and the reference to the binding Y.to_string on line 12.

– Renaming the binding in the second parameter now induces a dependency on renaming the
Int.to_string binding, since the module Int is also passed as the second argument to the
nested application of the Pair functor. For this program, the footprint of this dependency is
the binding definition in the Int module on line 3.

– The Int module is also passed as the first argument to the outer application of the Pair
functor. Thus, the binding of to_string in the first parameter of the functor must be renamed
too. This involves renaming the declaration in the signature of the first parameter, on line 9,
and the reference to the binding X.to_string on line 12.

– Finally, renaming the binding in the first parameter induces a dependency on renaming the
to_string binding in the String module, which is also passed as the first argument to the
inner application of the Pair functor. The footprint of this dependency is the identifier in
the binding defined on line 7.

This example very clearly demonstrates the fact that a renaming may quickly induce a long
chain of dependencies; renaming in OCaml is, in general, a highly complex task. In order to control
this complexity, in the next section we show how these dependencies can be formalised.

4 REFACTORING DEPENDENCIES

The examples in Section 3 illustrate how an initial renaming may induce other renamings. This
happens due to the interaction of a number of OCaml’s language features, such as the include
construct; module (type) aliasing; the use of interfaces (i.e. named module types) and module type
constraints; and the application of functors. These renamings can induce further renamings, and so
on, based upon the particular structure of the program that the renaming is being applied to.

We see this phenomenon not as an incidental artefact of renamingwithinOCaml, but as indicative
of a more fundamental aspect of the refactoring process itself. To explain and understand this more
fully we propose to formulate an abstract notion of dependency for refactoring actions, which is
novel in the literature on refactoring.

4.1 Distilling a Notion of Dependency for Refactoring

As the examples in Section 3 demonstrate, a renaming depends upon the other renamings that it
induces in the sense that the latter must all be applied in order for the former to be correct. We
have noticed two interesting aspects about these renaming ‘dependencies’. One is that induced
renamings are mutually dependent on the renaming that induced them, and that the network of
direct dependencies can have complex, non-trivial structure. The other is that the footprints of the
individual renamings—the particular set of changes in the codebase that they represent—do not
overlap.
This suggests that our renaming dependencies constitute something other than refactoring

preconditions, a concept introduced by Opdyke [1992] in his thesis which was one of the founding
projects in the field. A refactoring precondition must be applied, or already hold, before the refac-
toring itself can be applied. It may involve modifying code which is then subsequently modified by
the primary refactoring, i.e. the footprints of the precondition and the refactoring may overlap.
Also, refactoring preconditions do not generally exist in complex, interrelated networks.
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It is thus perhaps tempting to see the set of renamings generated in this way as something
intrinsic to, or a procedural artefact of, carrying out the initial renaming and thus only relevant as
an implementation detail. However we believe there are at least two very good reasons not to take
this view.
(1) We found that in order to render implementing renaming for OCaml even feasible we had

to modularise the problem by identifying these ‘subsidiary’ renamings and then applying
them separately. When a particular design choice fundamentally threads itself through the
architecture of a system, it can indicate a deeper concept worthy of further elucidation.

(2) Faced with a large, automatically computed patch to a codebase, it can be very difficult for the
programmer to determine if applying it really achieves the intended result. An understanding
of which renaming subtasks are involved and their interrelationships can actually provide
confidence that this is so, and therefore make code review and change management more
effective. Alternatively, if the set of dependencies is large, it may help the programmer to
realise that a different, more local change is actually what should be enacted.

Although each individual renaming is dependent on the others and therefore, in some sense, a facet
of the same ‘object’ to be renamed, these relationships are not ipso facto evident to the programmer.
From a high-level point of view, each renaming applies to a logically independent component.
Indeed it is the underlying dependencies that determine how the refactoring unfolds, not vice versa.
There is therefore utility revealing this structure.

4.2 Widening the Notion of Dependency

The notion of refactoring dependency that we have examined thus far has been informed by, and is
tailored to, renaming value bindings in OCaml. However, we expect it to generalise quite naturally
to refactoring in a wider sense than simply renaming, and also to apply to other programming
languages.

Many of the situations illustrated in Section 3 will also apply, for example, to renaming modules
and module types themselves. Furthermore, it is not difficult to imagine that similar notions of
dependency will also exist for value types. These are also defined in modules and declared in
module types; may alias or reference one another in their definitions; and may also be used in value
type annotations. This means that renaming, or even modifying the definition of value types will
induce further such refactorings. Moreover, since value types affect the definition of value bindings,
modifying value types will induce dependencies on modifying value bindings. We begin to see that
the network of dependencies for a general refactoring may be composed of many qualitatively
diverse operations.
We have also mentioned, in Section 2, that OCaml’s module system has some similarity to

programming constructs found in object-oriented languages. It is therefore perhaps reasonable to
expect that our notions of refactoring dependency will have some analogue in the context of these
other languages. Indeed, OCaml itself also contains true object-oriented features (classes, objects,
inheritance, methods, etc) and so further extensions of dependencies to deal with this subset of the
language should carry over to other object-oriented settings.

4.3 Abstract Properties of Refactoring Dependencies

In anticipating the more general application of the notion of dependency for refactorings, it
behooves us to consider: what are the possible abstract properties that characterise them? We have
already hinted at some, above: the footprint of individual dependencies do not overlap, and the
direct dependency relation is a graph structure. We also noted that, for renaming value bindings,
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direct dependencies appear to always be mutual—thus the dependency graph is connected. We do
not know if this will be the case in general.
We can also observe a further aspect in our analysis in Section 3. We can ask, for a given

refactoring, what are its dependencies with respect to some subset of the program. For example,
a dependency induced by a module include can be determined by examining the renaming
with respect to the including module. That is, each dependency can be linked to a particular
subcomponent of the program. Of course, each dependency can be determined by analysing the
whole program, but the direct dependencies (and indeed the footprint) of each refactoring is actually
only determined by some subset of the program.We can call this subset the ‘kernel’ of the refactoring
for the program. A consequence of this is that the dependency graph can be constructed, node by
node, using the kernel of each node.
These observations form the basis of the generic interfaces implemented by our tool, Rotor,

and the algorithm it uses for computing refactorings, which are discussed in Section 5.

4.4 Applications

Our concept of refactoring dependency, as far as we are aware, is a novel one. We believe it will
contribute to wider research into refactoring and programming languages in the following ways.

4.4.1 Presenting the Results of Refactorings. Refactoring dependencies provide an alternative
way to present the results of a refactoring instance to the user. A diff patch is a ‘flat’ presentation
and gives little information about relationships between the changes. In contrast, a dependency
graph displays much more structure and gives more ‘logical’ information about the refactoring and
its relationship to the code. Combining a dependency graph with a diff gives both a concrete and
an abstract presentation of the refactoring to the user at the same time.

4.4.2 Declarative Specifications for Refactorings. A refactoring dependency graph can be viewed
as the result of ‘compiling’ the high-level, human description of a refactoring task (“rename this
binding”) into a declarative specification of what it means to carry out the refactoring on a given
codebase. Consequently, it can be taken to constitute the ‘meaning’ of the refactoring with respect
to a given program. This contrasts with previous approaches in which refactorings are understood,
specified and implemented from an operational point of view, and points towards a possible way of
treating refactoring semantically.

4.4.3 Program Abstraction. We suggested above that the renamings in a graph of mutual re-
naming dependencies are really the various faces of a single underlying program subcomponent.
Considering more dependency graphs consequently captures a view on a greater portion of the
program. Thus, we propose that sets of dependency graphs actually represent an abstraction of
the program itself. By considering more kinds of dependency, we can capture increasingly finer
abstractions.

4.4.4 Verification. Insofar as refactoring dependencies constitute some (semantic) notion of
meaning and abstraction for both refactorings and the programs they operate on, they provide a
foundation for reasoning about refactorings, and verifying their correctness.

5 ROTOR: A TOOL FOR REFACTORING OCAML

We now describe the implementation of our tool, Rotor. We begin in Section 5.1 with a high level
description of Rotor’s architecture and basic pipeline, as well as how it accommodates and makes
use of the OCaml language infrastructure. We then examine a number of important aspects of its
design in more detail. In particular, we address how Rotor:
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Fig. 1. Diagrammatic representation of Rotor’s high-level architecture.

– provides a generic framework for implementing and applying refactorings to OCaml code (§5.2);
– identifies different subcomponents of programs (§5.3);
– analyses abstract syntax trees using automatically generated visitor classes (§5.4); and
– generates the dependencies and results of applying refactorings (§5.5).
Rotor is available as an open source project online: gitlab.com/trustworthy-refactoring/rotor.

5.1 High-level Architecture

A diagrammatic representation of Rotor’s high-level architecture is given in Fig. 1, showing the
major components of the tool. These include visitor classes for traversing abstract syntax trees; a
generic framework for supporting refactorings, along with the concrete implementation of renam-
ing; datatypes for abstractly representing logical elements of the OCaml language itself; modules
for accessing a program’s codebase and managing metadata about its compilation environment;
and finally, a front end allowing the user to interact with the tool.

5.1.1 Refactoring Pipeline. As input, Rotor takes a codebase (i.e. a program and/or set of
libraries), a value binding identifier, and a new name for the binding. As output, it produces a
patch file of changes that can be applied to the codebase to effect the renaming. We opted against
having Rotor perform the renaming in-place in favour of an approach that more easily facilitates
integration with other tools and external pipelines.
In order to minimise the processing time for the refactoring, Rotor first computes the source

file dependency graph of the codebase. Rotor computes this itself rather than, e.g., relying on the
output of ocamldep, which can be ambiguous in the absence of extra information about the build
environment of the program (cf. Section 5.1.3 below). This dependency graph can be pre-computed,
and incrementally updated according to the changes introduced by refactorings (although note
that simply renaming a binding will not affect the source file dependency graph).

Rotor then proceeds to compute the renaming using a worklist algorithm, shown in pseudocode
in Fig. 2, with the worklist initially containing the input renaming. While the worklist is non-
empty, Rotor takes a renaming from the list, and processes it as follows. It first calculates an
(over)approximation of the footprint of the renaming, which consists of the source file(s) that
define the binding to be renamed and all the source files that directly depend on them (i.e. refer to
subcomponents of the modules defined by them). For each of these files, Rotor computes: i) the
textual replacements to be applied to the file; and ii) the bindings declared in the file that need
to be renamed as a consequence of the renaming currently being processed (i.e. the renaming
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procedureWorklist(c , r ) ▷ Codebase c , initial renaming r
W ← {r }; D ← ∅; R ← ∅ ▷WorklistW , Dependencies D, Replacements R
whileW , ∅ do

r ← choose(W )
W ←W \ {r }; D ← D ∪ {r }
for all f ∈ footprint(r, c ) do ▷ File f
R ← R ∪ replacements( f , r )
W ←W ∪ (dependencies( f , r ) \ D)

end for
end while
return (R,D)

end procedure

Fig. 2. Rotor’s main worklist algorithm.

dependencies). Each renaming dependency that has not already be processed is then added to the
worklist.

Once all the renaming dependencies and textual replacements have been computed, Rotor then
applies all of the replacement operations to the original source code and produces a diff. Rotor can
also produce a log file containing all the renaming dependencies of the given input renaming. It is
worth noting that the computation of the dependencies is independent of computing the refactoring
itself (i.e. the patch to be applied); indeed, the former is a precursor to the latter, although the
computations can be interleaved. Rotor can link each individual part of the computed patch to the
dependency that produced it; thus it is able to ‘explain’ in detail to the user what it is doing.

5.1.2 Reuse of the Compiler Infrastructure. Since Rotor is written in OCaml, it is able to make
direct use of the OCaml compiler infrastructure via the compiler-libs package. We leverage this
capability, firstly by reusing the datatypes defined in the compiler that represent the abstract syntax
trees (ASTs) of OCaml source files; and secondly, by delegating all parsing and type checking to
the compiler itself. That is, we are able to use the interface exposed by compiler-libs to directly
obtain untyped and typed AST from the source files provided by the user.

The OCaml compiler stores detailed information in the AST regarding the source file locations
of each element. Thus an advantage of this approach is that it is very straightforward for Rotor
to generate replacement operations as it analyses the ASTs. Rotor also makes heavy use of the
functions available in the compiler to look up elements that are in scope at different points in
the source code. This is particularly useful for performing renaming, since the compiler performs
binding analysis as part of the type checking process. Thus, Rotor can obtain a unique ID number
for the value to be renamed (as well as its parent modules), and then simply compare this to those
of the identifiers that it finds as it traverses the AST. The OCaml compiler also provides functions
for looking up various elements within module types, which is crucial to correctly and accurately
generating renaming dependencies.

5.1.3 Managing the Codebase. In order to correctly apply refactorings across a whole codebase
Rotor needs to be aware not only of the semantics of the core OCaml language, but also of how a
program’s codebase is demarcated, organised, and compiled into a working executable or library.
Most immediately, Rotor must know where to find the source files over which it is to operate.
Moreover, the program to be refactored may make use of external libraries that are not intended to
fall within the scope of the refactoring process and for which, most likely, the source code is not
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available. However, since Rotor makes use of the OCaml compiler, it must also know where to
find these libraries so that it can make them available to the compiler for type checking.

Extended aspects of theOCaml language and a program’s build environment also have an impact
on the refactoring process. We describe two of these in particular, which have proved vital to
consider in the course of developing Rotor.

PPX Preprocessors. OCaml has a preprocessor infrastructure called PPX [Leroy et al. 2017,
Chap. 27], the use of which is common in real-world OCaml software development [Frisch 2014].
This means that in order to produce the ASTs that Rotor uses for analysis, it is necessary to know
which PPX preprocessors are applied to each source file. Rotor currently sidesteps this issue by
relying on the presence of .cmt and .cmti files. These are artefacts produced by the compiler,3
which contain a binary representation of the typed AST for a given source file and from which the
compiler (and thus also Rotor) can reconstruct ASTs. In the future, we plan to engineer Rotor so
that it can determine which preprocessors to apply by reading build configuration files such as
ocamlbuild’s _tags files, or jbuilder’s jbuild files.
Packaging Strategies. In large codebases, namespacing can become an important issue: it may

be desirable to have multiple top-level modules with the same name, as long as they belong to
different projects. Although not supported by theOCaml compiler directly, it possible to implement
build processes that achieve this using the type level module aliases language extension (see [Leroy
et al. 2017, §8.12]).

For example, to compile themodules contained in files foo.ml, bar.ml, and baz.ml into a package
called rotor, an auxiliary parent file rotor__.ml is created containing aliased submodules:

module Foo = Rotor__Foo
module Bar = Rotor__Bar
module Baz = Rotor__Baz

This is then compiled into a module Rotor__ with the -no-alias-deps flag, which instructs the
compiler not to try and compile any dependencies—i.e. the modules Rotor__Foo, Rotor__Bar, and
Rotor__Baz, which do not (yet) exist. Each of the original source files is then compiled using the
following command, in this case for foo.ml:

ocamlc -no-alias-deps -open Rotor__ -o Rotor__Foo.cmo -c foo.ml

to produce the namespaced modules Rotor__Foo, etc. The result of using this compilation strategy,
implemented by e.g. the jbuilder build system, is that in the ASTs Rotor will encounter identifiers
such as Rotor__.Foo, Rotor__Bar, etc., which do not correspond to the names of source files
created by the programmer. Instead, Rotor must know that it should associate these with files
named foo.ml, bar.ml, etc., in a package called rotor. In short, the strategy implements a non-
standard mapping between module names and source files.

Rotor deals with these two issues using a collection of modules for representing and managing
information about a program’s codebase and build environment.

– The Fileinfos module encapsulates the metadata associated with a single file in a program.
This includes its location on disk, the name of any package or library that it belongs to, and which
preprocessors should be applied.

– The Sourcefile module manages the production of the ASTs for a source file. Since parsing,
type checking, or reading ASTs from a .cmt or .cmti file is a relatively time-consuming process,
and not all files in a codebase will need to be analysed for a given refactoring, this is only done
once on demand and the results cached in memory. The Sourcefile module is also responsible for
serving the source code of the file from disk, and applying the results of refactorings to it.
3The OCaml compiler produces them as a by-product when invoked with the -bin-annot flag.
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– The Codebasemodule acts as a set of Fileinfos values, and thus represents the codebase of a
project as a whole. It is also responsible for computing and managing the file dependency graph of
a project (cf. Section 5.1.1), as well as project-wide metadata such as external library dependencies.

– The Buildenv module holds knowledge about aspects of the build environment. In particular,
it knows about packaging strategies and is responsible for providing appropriate mappings between
identifiers encountered in the typed AST and source files in the codebase.

5.2 A General Framework for Refactorings

We have designed Rotor with extensibility in mind, in order to make it straightforward to integrate
new refactorings as and when they are implemented. This is mediated via a number of generic
interfaces and abstract datatypes, which implement the concepts discussed in Section 4. Concrete
refactorings are expressed as first class modules. Specifically, we implement a form of the factory
design pattern [Gamma et al. 1995], comprising the following elements.
Runtime Representation. The Refactoring_reprmodule provides an abstract datatype whose

values are runtime representations of refactorings. The Refactoring_repr.t datatype is
implemented as a variant type, currently providing representations of value binding renaming
and the identity refactoring that leaves a program unchanged. Further constructors can easily
be added to represent other refactorings.

Abstract Source Code Replacements. The basic model we implement is that of refactorings as
sets of textual replacement operations on source code. Thus, a replacement can be charac-
terised by a location range in a source file and a ‘payload’ string which replaces the existing
code within that range. This abstraction is flexible since it can express both the insertion of
new code (using a zero-length range) and the deletion of existing code (using a zero-length
payload). The Replacement module implements an abstract datatype for the source code
replacement operations, and has the basic signature shown in Listing 2.

type t (* The abstract type of replacements *)
type payload = string
module Set : Set.S with type elt = t
val mk : Location.t -> payload -> t
val apply : t -> Sourcefile.t -> string
val apply_all : Set.t -> Sourcefile.t -> string

Listing 2. The basic signature of the Replacement abstract datatype.

We use the compiler’s Location.t type to represent location ranges in source code. The
apply function takes a single replacement and a source file representation, and returns the
result of applying the replacement to the source code in the file. The apply_all function
applies a set of replacements to the contents of a source file.

An Interface for Refactorings. We define a common interface Refactoring.S for refactorings,
shown in Listing 3, so that any module implementing this interface may be used by Rotor
as a refactoring. A refactoring must be able to carry out four basic operations:
1) return a runtime representation of itself;
2) return the set of refactoring dependencies that are directly induced by the refactoring

with respect to a given source file;
3) return the set of replacements that must be applied to the given source file in order to

effect the refactoring; and
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module Set : Set.S with type elt = Refactoring_repr.t

module type S =
sig
val repr : Repr.t
val get_deps : Sourcefile.t -> Set.t
val process_file : Sourcefile.t -> Replacement.Set.t
val kernel : Codebase.t -> Fileinfos.t list

end

Listing 3. The basic signature of the Refactoring module.

4) return a refactoring kernel for a given codebase—this is a subset of the codebase
(i.e. source files) that contains the footprint of the refactoring, and is sufficient for
computing all of the (direct) dependencies of the refactoring.

The notion of a kernel, discussed in Section 4, allows for efficiency: the footprint and de-
pendencies of a refactoring can be computed by iterating over all files in the codebase
and applying the process_file and get_deps functions, however this is expensive and in
general it will only be necessary to iterate over a subset of the files.

A Factory Module. The final element of our extensible architecture is the Refactoring_lib
module, which contains a function

val of_repr : Refactoring_repr.t -> (module Refactoring.S)

mapping runtime representations of refactorings to (first class) module values, which can
then be unwrapped and used to compute and apply the results of the appropriate refactoring.
Having a factory module to perform this mapping means that adding new refactorings to
Rotor requires only that we modify: a) the datatype for runtime representations to capture
the new refactoring; and b) the factory module to be aware of a new mapping.

5.3 Identifying Program Elements

OCaml programs have a hierarchical structure, in which both module bindings and module type
declarations can be nested within one another and can also contain value bindings or declarations.4
OCaml uses ‘dot notation’ for identifiers, which uses the infix operator dot (‘ . ’) to indicate this
hierarchical nesting. Take, for example, the Set module from OCaml’s standard library. This
contains a module type S, which is the signature of modules created using its Make functor. In
particular, this signature declares a function named add, which could be referred to using the
identifier Set.S.add. Although it captures the hierarchical structure, the identifier does not specify
the sort of element at each level.

Whilst sufficient for the purposes of the OCaml compiler—which can disambiguate the informa-
tion it requires based upon the context in which an identifier is used—Rotor’s use of identifiers
imposes further requirements. We describe two in particular.

– Rotor needs to be able to reference more intricate program structures. Returning to the
example of the OCaml standard library’s Set module, there is no lookup function5 in the

4In OCaml’s terminology, named subcomponents of modules which specify implementations are called ‘bindings’, whereas
named module types and their subcomponents are ‘declarations’.
5Here, we are referring to the functions in the Envmodule that look up elements in scope at some particular point in the AST;
these functions require the caller to know the sort of element to be found, e.g. Env.lookup_module, Env.lookup_modtype,
Env.lookup_value, etc.
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compiler that will interpret the identifier Set.S.add as referring to a declaration of the value
add in the S module type within Set. Instead, one has to first look up Set.S based on the
knowledge that it refers to a module type; only then can the declaration of add be found by
looking up a value binding specifically.

– Rotor is not always able to rely on context to give meaning to identifiers. For example,
OCaml allows a module and a module type to be bound using the same name in a given
scope. We have encountered cases in our test-bed where this occurs, and where it is also
crucial that Rotor can identify one rather than other in order to perform a renaming.

Furthermore, Rotor needs to be able to distinguish between structures and functors, between their
associated structure and functor module types, and identify functor parameters and arguments.

5.3.1 A Syntax for Rich Identifiers. OCaml interprets the dot ‘ . ’ in identifiers as a (left associative)
infix operator. Rotor enhances OCaml’s notion of identifiers by generalising the dot syntax in
two ways. Firstly, instead of treating the dot as an infix operator, it uses it as a prefix operator on
names to indicate an element of a particular sort and introduces new prefix operators to express
other sorts (module, module type, value, etc.). Rotor currently uses the operators ‘ . ’, ‘#’, ‘%’, ‘*’,
and ‘:’ to indicate structures, functors, structure types (i.e. signatures), functor types, and values,
respectively. Notice that this scheme is extensible: we can easily add representations for other
sorts of OCaml language element (e.g. value types, exceptions, classes, objects, etc.) by adding new
prefix operators. We also introduce an indexer element of the form [i] to our syntax for identifiers,
whose intended meaning is to stand for the ith parameter of its parent element. We use numerical
indices for functor parameters since functor parameter names are not immediately available at
application sites, and parameters are permitted to be named differently in module type annotations.
Secondly, the hierarchical structure is now represented by the sequencing of prefixed names.

The syntax of Rotor’s identifiers is given by the following grammar.

⟨signifier⟩F ‘.’ | ‘#’ | ‘%’ | ‘*’ | ‘:’

⟨id_link⟩F ⟨signifier⟩ ⟨name⟩ | ‘[’ ⟨index⟩ ‘]’

⟨identifier⟩F ⟨id_link⟩ | ⟨id_link⟩ ⟨identifier⟩

Where the nonterminal ⟨name⟩ denotes a standard OCaml (short) identifier, and ⟨number⟩ denotes
a non-negative integer literal. We illustrate this syntax on the examples from the standard library
considered above:

.Set%S refers to the S module type within the Set module;

.Set%S:add refers to the add value declaration within the .Set%S module type;

.Set#Make refers to the Make functor within the Set module;

.Set#Make[1]:compare refers to the declaration of the compare value in the (module) type of
the .Set#Make functor’s first parameter.

Rotor overloads this last example in order to refer to the compare binding in the first argument to
an application of the .Set#Make functor (these two uses can always be disambiguated by Rotor
from the AST context). When the immediate child of a functor (type) element is not a parameter,
as in .Set#Make:add, Rotor interprets the remainder of the identifier (in this case the add value
binding) to refer to an element within the body of the functor.

5.3.2 A GADT Representation. In building a data structure to represent these identifiers, Rotor
has two main constraints that derive from how they are used to guide the analysis of code to
be refactored. One is that Rotor performs top-down traversals of the AST, and thus when using
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Set. S% add:

(a) Rotor’s representation of .Set%S:add

. add. SSet

(b) OCaml’s representation of Set.S.add

Fig. 3. Representations of hierarchical identifiers in the OCaml compiler and Rotor.

identifiers to guide these traversals (e.g. to find a local binding), Rotor deconstructs them left-
to-right. This means that Rotor parses sequencing of sort-signified names as right associative.
Thus, for example, Rotor represents the identifier .Set%S:add as shown in Fig. 3a. This directly
contrasts with the implementation of identifiers in the OCaml compiler, in which the top most
parent module is deepest in the data structure. This is illustrated in Fig. 3b, which shows OCaml’s
representation of the identifier Set.S.add as a Longident.t.

Although Rotor requires a top-down representation for identifiers, it nonetheless still requires
access to the sort of the final element in the chain. To achieve this we use generalised abstract
datatypes (GADTs), which allow fine-grained control over type parameters in the construction of
data values. We implement a datatype 'a Identifer.t in which the type parameter 'a specifies
the sort of the final subcomponent. This comprises the following.

Phantom types for language elements. We define a number of ‘phantom’ types to refer to
elements of the OCaml language.

type _value = Value type _parameter = Parameter
type _structure = Structure type _functor = Functor
type _structure_type = StructureType type _functor_type = FunctorType

These types are only for use in type checking: we do not create any values of these types at runtime.
The reason that we do not leave them completely abstract (i.e. without a definition) is that OCaml

requires a concrete definition in order to be able to statically exclude unreachable match cases.
Sorted Atoms. We define a GADT of atomic elements whose type parameter is constrained to

be one of the language element phantom types.

type 'sort atom =
| Value : string -> _value atom
| Parameter : int -> _parameter atom
| Structure : string -> _structure atom
| StructureType : string -> _structure_type atom
| Functor : string -> _functor atom
| FunctorType : string -> _functor_type atom

The Identifier type. We define a GADT for hierarchical identifiers within a module Identifer
as follows.

type 'sort t =
| Atomic : 'a atom -> 'a t
| InParameter : int * 'a t -> 'a t
| InStructure : string * 'a t -> 'a t
| InStructureType : string * 'a t -> 'a t
| InFunctor : string * 'a t -> 'a t
| InFunctorType : string * 'a t -> 'a t
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Although this datatype needn’t be defined as a GADT, defining it as such means that in the future
it could easily be extended to represent elements whose subcomponents should be constrained to
particular language elements, e.g. concrete functor applications:

type 'sort t = . . .
| InFunctorApplication : (_functor t * _structure t) * 'a t -> 'a t

Moreover, as Rotor is extended to represent other language elements it will become necessary
to enforce further constraints on the structure of identifiers (e.g. a class declaration cannot have
a module as a subcomponent). Whilst this could be done dynamically at runtime, GADTs allow
such constraints to be encoded statically and used to reduce code clutter, since the compiler can
determine that certain match cases are not possible. For example, we specify that the identifier for
a value binding renaming should be of type _value Identifier.t, and so when matching the
atomic case we only need to specify a case for the constructor pattern Atomic (Value v). This is
one advantage of Rotor’s representation for identifiers.
Another advantage of this representation is that we can easily make the sort of an identifier

available to Rotor. This contributes to the extensibility of Rotor, since it makes it easier for the
factory module to dispatch control to the correct refactoring implementation. For this, we introduce
a runtime representation for OCaml language elements, and an additional type for identifiers that
existentially quantifies over the sort:

type 'sort elem =
| Value : _value elem | Parameter : _parameter elem
| Structure : _structure elem | StructureType : _structure_type elem
| Functor : _functor_type elem | FunctorType : _functor_type elem

type _t = Ex : 'a elem * 'a t -> _t

The Identifier module provides a parsing function for identifiers.
val parse : string -> _t

This allows for the sort of the result to be pattern-matched, and the identifier it contains to then be
passed to code requiring a specific sort.

5.3.3 Grouping Compiler Functions with Ad-hoc Polymorphism. Rotor’s use of GADTs to repre-
sent language elements allows it to implement a form of ad-hoc polymorphism, grouping families
of similar compiler functions that operate over different parts of the AST structures. For example,
the compiler contains a number of lookup functions for different elements that return a resolved
path to the element and appropriate information on its type. We define a GADT, that we call a
‘view’, to group together this type information that is represented by different datatypes within the
compiler’s Types module:

type 'sort type_view =
| Value : Types.value_description -> _value type_view
| Structure : Types.module_declaration -> _structure type_view
| Functor : Types.module_declaration -> _functor type_view
| StructureType : Types.modtype_declaration -> _structure_type type_view
| FunctorType : Types.modtype_declaration -> _functor_type type_view

We can then define a lookup function, shown in Listing 4, that groups together the compiler’s
lookup functions for the different sorts of language element. This results in much more uniform
implementations for refactorings in Rotor.
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let lookup : Env.t -> 'a atom -> Path.t * 'a type_view =
fun env (type a) atm ->
match atm with
| Value v ->
let p, vd = Env.lookup_value (Longident.Lident v) env in
p, Value vd

| Parameter _ ->
invalid_arg "Doesn't correspond to a lookup function"

| Structure s ->
let p, md = Env.lookup_module (Longident.Lident s) env in
p, Structure md

| StructureType st ->
let p, mtd = Env.lookup_modtype (Longident.Lident v) env in
p, Structure mtd

| Functor f -> . . . | FunctorType ft -> . . .

Listing 4. A lookup function that groups the different compiler lookup functions.

class virtual ['self] iter : object ('self)
method visit_Add : 'monomorphic. 'env -> expr -> expr -> unit
method visit_Const : 'monomorphic. 'env -> int -> unit
method visit_expr_desc : 'monomorphic. 'env -> expr_desc -> unit
method visit_expr : 'monomorphic. 'env -> expr -> unit

end

Listing 5. The class type of an iter visitor for a simple expression datatype.

5.4 Use of Visitor Classes

The core of Rotor’s operation involves performing traversals of various types over the program’s
abstract syntax trees. For this, we have made use of the recently developed visitors syntax
extension for OCaml [Pottier 2017]. This automatically generates classes whose methods perform
a bottom-up traversal of values of a given set of datatypes. By default, these visitors do not perform
any operation in particular, beyond the basic traversal. However by overriding particular methods
complex computations can be carried out on these data values. This extension thus provides a basis
in OCaml for similar capabilities to those found in Haskell’s SYB generic programming library
[Lämmel and Peyton Jones 2003], the Strafunski framework [Lämmel and Visser 2003], and the
Stratego/XT language [Bravenboer et al. 2008].
The visitors library plugs into the ppx_deriving PPX framework to provide a preprocessor

that inserts default visitor classes for datatypes to which a [@@deriving visitors . . . ] anno-
tation is attached. For example, consider the following pair of mutually defined datatypes for a
simple tagged expression language (cf. [Pottier 2017, §2.3]):

type 'a expr_desc = Const of int | Add of 'a expr * 'a expr
and 'a expr = { tag : 'a; desc : 'a expr_desc; }
[@@deriving visitors { variety = "iter" } ]

Triggered by the @@deriving annotation, the visitors PPX preprocessor inserts a class with
the type shown in Listing 5. This class produces iterator visitors: objects which traverse expr and
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let count_const = object (self : 'self)
inherit ['self] iter as super
method! visit_expr ht ({ tag; desc } as e) =
match desc with
| Add _ -> super#visit_expr ht e (* delegate to default traversal *)
| Const i -> match Hashtbl.find_opt ht tag with

| None -> Hashtbl.replace ht tag i
| Some j -> Hashtbl.replace ht tag (i+j) end ;;

let htbl = Hashtbl.create 0 ;;
let e = { tag = "top"; desc = Add (

{ tag = "left"; desc = Add (
{ tag = "left" ; desc = Const 1 },
{ tag = "right"; desc = Const 2 }) },

{ tag = "right"; desc = Const 3; }) } ;;
let () = count_const#visit_expr htbl e in htbl ;;
>> - : (string, int) Hashtbl.t = [ "left" -> 1; "right" -> 5 ]

Listing 6. An iterator visitor for the expr and expr_desc datatypes.

expr_desc values, but do nothing else by default. The class has methods for each datatype and
each variant constructor with method names built from the names used in the type definition.
Each method also takes an ‘environment’ argument, which can be used to accumulate and pass
intermediate data around during the traversal. The 'monomorphic annotations on the method types
indicate that the type of this environment argument is quantified (and inferred) at the level of
the whole class, rather than each individual method. By defining classes or objects that override
these methods, we may implement bespoke traversals. We could, for example, create an object
that traverses an expr value and fills a hash table with bindings that return the sum of all the
Const sub-expressions tagged with a given annotation, as shown in Listing 6. The count_const
object inherits from the automatically generated iter visitor class, and overrides the visit_expr
method. If the expression is a Const, then it adds the constant value to the accumulated sum of the
expression’s tag; otherwise it delegates to the default implementation in order to traverse deeper
into the data value. Notice how the hash table is passed around as the environment.
The visitors library is able to create other kinds of visitor class. In particular, it can also cre-

ate reducers with the annotation [@@deriving visitors { variety = "reduce" }]. A reducer
class is parameterised by a result type 'res and contains two further methods, which must be
implemented by concrete reducer objects to define a monoid at the 'res type.

method private virtual zero : 'monomorphic . 'res
method private virtual plus : 'monomorphic . 'res -> 'res -> 'res

The visitor methods of reducers return a value of type 'res, with the default implementation
returning zero at the leaves, and combining the results of subcomponents using plus. Thus they
‘reduce’ a complex data value to a single result of type 'res. Although the visitors extension
provides a wide range of visitor classes (including, additionally, the map, mapreduce, and fold
visitors), Rotor currently only makes use of the reduce variety as we describe below.

5.4.1 Visitors for the OCaml ASTs. The OCaml compiler defines datatypes for both an untyped
and a typed AST, contained in modules Parsetree and Typedtree respectively. These AST types
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type tt_structure = Typedtree.structure = {
str_items : tt_structure_item list;
str_type : (Types_visitors.ty_signature [@opaque]);
str_final_env : Env_visitors.env_t;

}
and tt_structure_structure_item = Typedtree.structure_item = {
str_desc : tt_structure_item_desc;
str_loc : Location_visitors.location_t;
str_env : Env_visitors.env_t

}
and tt_structure_item_descr = Typedtree.structure_item_desc = . . .
[@@ deriving visitors { variety = "iter";

ancestors = [ "Env_visitors.iter"; "Location_visitors.iter";
"Types_visitors.iter"; . . . ] },

visitors = { variety = "reduce"
ancestors = [ "Env_visitors.reduce"; "Location_visitors.reduce";
"Types_visitors.reduce"; . . . ] }, . . . ]

Listing 7. A portion of Rotor’s Typedtree_visitors module illustrating generation of visitor classes.

refer to other types from a number of different modules, namely the Asttypes, Env, Ident, Lexing,
Location, Longident, Path, Primitive, and Types modules.

We use the visitors PPX to generate visitor classes for them as follows. We create modules in
Rotor named Parsetree_visitors, Typedtree_visitors, etc., corresponding to each compiler
module containing types for the ASTs. In these modules we place copies of the type definitions
from the corresponding compiler module, but with a number of crucial modifications.

i) We declare an explicit equality with the corresponding type in the compiler. This allows the
visitor classes that are generated to operate over ASTs obtained directly from the compiler.

ii) Since many datatypes in the various modules share the same names, we rename the types
in Rotor with prefixes, e.g. with tt_ in Typedtree_visitors, ty_ in Types_visitors, etc.
This is to avoid the visitors PPX generating more than one method with the same name
but with differing signatures, which would cause the generated classes to be ill-formed.

iii) We have to attach [@opaque] annotations to subcomponents with types belonging to the
Types module; this is to prevent the default implementations from actually traversing these
types. We do this because the datatypes in this module, which represent OCaml types, can
define cyclic structures and thus the default visitor implementations may result in non-
terminating traversals. The possibility remains for the developer to override these methods,
if they can ensure the resulting traversals will not loop.

We then attach [@@deriving visitors . . . ] annotations to the datatypes to obtain automati-
cally generated visitor classes for them.We also make use of the ancestors parameter to specify the
appropriate parent visitor classes that they should inherit from in order to traverse the externally
defined types they refer to. Listing 7 shows part of the definition of Rotor’s Typedtree_visitors
module, illustrating these points.

5.4.2 Visitors for Producing Refactorings and Dependencies. We noted that the most useful kind
of visitor classes for Rotor are of the reduce variety. This is because they allow Rotor to ‘reduce’
an AST to a single value. Rotor uses these kinds of visitors to analyse ASTs and produce sets of
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class ['self] replacement_reducer =
object (self : 'self)
inherit ['self]
Typedtree_visitors.reduce

method private zero =
Replacement.Set.empty

method private plus rs rs' =
Replacement.Set.union rs rs'

end

(a) Rotor’s reducer for replacement operations.

class ['self] dependency_reducer =
object (self : 'self)
inherit ['self]
Typedtree_visitors.reduce

method private zero =
Refactoring.Set.empty

method private plus ds ds' =
Refactoring.Set.union ds ds'

end

(b) Rotor’s reducer for depedencies.

Fig. 4. Reducers in Rotor’s library of derived visitors.

replacement operations and refactoring dependencies, which are the two main kinds of results that
Rotor’s refactorings needs to produce (see Section 5.2). Rotor contains a library of derived visitor
classes for concrete refactorings to make use of, including those shown in Fig. 4.

5.5 Generation of Replacements and Dependencies

In this section we detail how Rotor computes a set of textual replacements, i.e. the action of the
refactoring on a given codebase, and the dependencies for each renaming. The basic approach is to
define visitors for each task that inherit from the basic reducers shown in Fig. 4. The methods of
these visitors are overridden to generate replacement operations or representations of renamings
(i.e. dependencies) when certain patterns or conditions are encountered within the AST. In actuality,
a pair of reducers is defined for each task. This is because slightly different behaviour is required
depending on whether the binding to be renamed is defined within the AST being traversed, or
whether the AST simply uses identifiers that reference it.

‘Definition’ Visitors. These reducers search for the particular subcomponent of the AST that
defines the binding to be renamed, and so they constrain the traversal according to the identifier of
the binding being searched for. That is, they deconstruct the identifier one element at a time, and
at each stage find the corresponding subcomponent of the current AST node (i.e. module, module
type, functor parameter, or value binding). They then traverse the subcomponent according to the
remainder of the identifier. Because the identifier will stipulate that a module should be either a
structure or a functor (similarly with module types), the visitor must check that the module and
module type subcomponents it finds are of the correct sort. It does this by examining the type
inferred for the subcomponent, which is available in the typed AST.
At each stage of this traversal, the ‘definition’ visitor must also delegate to the ‘use’ visitor to

process the AST that constitutes the rest of the source file, possibly also including the AST for the
subcomponent in which the binding is defined, in the case it is recursive.6 This is because in the
remainder of the file, after its definition, (and within recursive definitions themselves) the binding
may be referenced. It is the ‘use’ visitor that knows how to process these references, whether they
are referencing a binding defined in the same source file or externally to it.

The ‘definition’ visitor for dependencies simply traverses the AST delegating to the ‘use’ visitor
at each level. The ‘definition’ visitor for generating replacements also computes the replacement
operation for renaming the local binding when it finds it. Moreover, it performs a soundness check

6
OCaml allows both recursive module and value definitions, signalled explicitly with the rec keyword.
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to make sure that there is no existing binding of the target name. If this is the case, the resulting
refactoring would change the behaviour of the program, and Rotor throws an exception. That the
renaming does not shadow an existing binding constitutes a precondition for the refactoring, which
is ordinarily checked before the refactoring is carried out. Our work in developing Rotor suggests
that the most convenient way to check if such preconditions hold is simply to detect violations
as the refactoring is computed. Thus, we do not mean here that Rotor fails in performing the
refactoring; rather the exception is used to provide feedback that a precondition does not hold.

‘Use’ Visitors. These visitors traverse the whole AST looking for references to the binding being
renamed. Before beginning the traversal, Rotor calls a function in the compiler to look up the
top-most element in the identifier, which returns a unique ID number for it. Then every time an
identifier is encountered in the AST, after first calling a compiler normalization function to ensure
it is in a canonical form, the visitor can check if it corresponds to the binding to be renamed using
this unique ID. On encountering an include of the value binding, the ‘use’ visitor for replacements
also performs a soundness check, as described above for the ‘definition’ visitor.

For computing dependencies, the ‘use’ visitor maintains a record of the scope it encounters as it
traverses the AST. Rotormanages this scope using an abstract datatype defined in the Modulescope
module (cf. Fig. 1). Every time it enters into the body of a module (type) binding, or the body and
parameters of a functor, it registers a new frame in the scope. This allows the visitor to generate the
identifier of bindings to be renamed in dependencies. For example, suppose the visitor is searching
for occurrences of the identifier Foo.Bar.baz and encounters the module alias module M = Foo
in an AST. It should then generate a dependency on renaming ⟨parent_id⟩.M.Bar.baz, where the
identifier ⟨parent_id⟩ corresponds to the scope in which the module alias occurs. A similar situation
arises with an include of a module (type).

In certain situations, the ‘use’ visitormust also delegate back to the ‘definition’ visitor. For example
when renaming a bindingwithin a functor parameter, identified by #Foo[1]:bar (cf. Section 5.3), the
visitor may encounter an application of the functor, e.g., Foo (struct . . . end). Here a renaming
of the binding bar must take place inside the argument to this application, i.e. within the module
expression struct . . . end. The binding is expected to be defined within the argument, therefore
it is the ‘definition’ visitor that should process this subcomponent.

6 CASE STUDY

We tested our prototype refactoring tool using a real-world test-bed consisting of a large number
of the Jane Street [2018] public libraries. Namely, we took a snapshot of the core library and its
dependencies. This includes the libraries core_kernel, base, stdio, fieldslib, sexplib, and a
large number of libraries for PPX preprocessing and unit testing, which are used heavily throughout
the test-bed. Altogether, the snapshot comprises 77 libraries containing together 869 source files.

These libraries form the core of Jane Street’s codebase, which underpins their business activities
and runs into millions of lines of code. It is the result of many years of continuous development,
and therefore represents both a very robust and broad range of usage of the OCaml language. This
makes it ideal as a test-bed for our prototype.

6.1 Harvesting Test Cases

To obtain a suite of test cases for renaming, we harvested the collection of identifiers that is used in
the test-bed. We did this by creating a visitor to traverse the ASTs of the source files and collect all
the value identifiers that it encountered. We placed two filters on the identifiers that are collected.
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Rebuild Failed Rebuild Succeeded
2336 733
(76.1%) (23.9%)

(a) Success/failure rate of re-compilation.

Files Hunks
Avg.

Hunks/File Depends
Max 35 91 5.7 92
Mean 4.1 6.1 1.2 14.0
Mode 3 3 1 1

(b) Statistics (success cases).

Files Hunks
Avg.

Hunks/File Depends
Max 66 304 7.7 864
Mean 5.1 7.9 1.3 48.6
Mode 2 2 1 1

(c) Statistics (failure cases).

Fig. 5. Results of running Rotor over the renaming test suite.

(1) We did not collect any identifiers whose source location has a ‘ghost’ flag set. This flag indi-
cates that the AST node to which it is attached is not part of the programmer’s original source
code, but was instead automatically generated either by the compiler or by a preprocessor.

(2) We only collected identifiers that the compiler considers ‘persistent’—that is, referring to
bindings defined outside the current source file. This is because we needed to harvest identi-
fiers that address bindings from the top level of the program. For non-persistent identifiers
we would have had to compute the local source of the binding being referred to, as well as
its scope, in order to produce such an address. Moreover, the binding referred to might be
defined in an anonymous module,7 and therefore not be addressable at all.

In total, we harvested 5051 of these persistent, non-ghost identifiers. Of these, 963 referenced
bindings outside of the test-bed (e.g. in OCaml’s standard libraries), and so we discarded them as
test cases. A further 1019 referred to infix operators. We also discarded these cases since renaming
these operators would require more complex, non-local changes. Specifically we would need to
change the structure of the applicative expressions in which the operator is used, in order to move
the renamed identifier into the head position of the application. Rotor does not yet support this,
although doing so is future work. This left a total of 3069 bindings that formed the cases of our
renaming test suite.

6.2 Results and Analysis

For each identifier in our test suite, we ran Rotor to compute the result of renaming the identifier
using a fresh name not occurring in the codebase.8 We then applied the resulting patch to a
copy of the test-bed source code and attempted to recompile it. Admittedly this is a rather crude
test for success, since it is possible to obtain false positives: cases in which the renaming is
computed incorrectly but still compiles, thus producing a valid program but with different behaviour.
Nevertheless, it is a good first approximation for a test suite as large as ours.
Our results are shown in Fig. 5. They show that recompilation succeeded for around 24% of

our test cases (733 out of 3069). Theoretically we might expect all test cases to succeed, since we
chose a fresh identifier for the renaming. One reason that this is not the case is that the renaming
might depend on modifying a binding outside the codebase, e.g. in the standard library. In this case,

7An anonymous module is one that is not bound to a name—this can happen when a complex module expression is used in
an include statement or as the argument to a functor application.
8Imaginatively, we chose the new name to be ‘foo’.
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the refactoring is actually outside the scope of Rotor’s ability; the solution here is for Rotor to
signal this to the user. This case might actually be relatively common in our test-bed, since it was
developed as an overlay to the standard library. Still, even discounting such cases the failure rate of
our test suite seems high. There are a number of other reasons why this might be the case.

– The tool itself does not catch all changes that must be made—Rotor is a prototype, and still
requires further development. We have already mentioned in Section 2 that it does not handle
module type extraction and first class modules; other corner cases are also problematic,
e.g. anonymous modules.

– The refactoring might attempt to rename the identifier in a binding that is automatically
generated; even though the source code for the preprocessors is included within the test-bed
this will fail since correctly performing the renaming will require modifying the behaviour
of the preprocessor itself (i.e. implementing a different name generation scheme).

– We have found that the preprocessors do not always correctly set the ‘ghost’ flag in the
ASTs they generate. This has caused some interesting errors: the preprocessors often set the
location of automatically generated identifiers to be that of the original program element
that triggered the preprocessor (e.g. a type definition, for which the preprocessor generates a
comparison function); the result is that Rotor renames the wrong element (e.g. a type).

In the second case the renaming is clearly out of Rotor’s scope of operation, and it is not clear
how Rotor could determine that this is the case. In the third one, the failure is not Rotor’s ‘fault’
but it at least seems feasible that Rotor could detect a potential problem by, e.g., checking that
there is not more than one non-ghost AST node corresponding to the same source location. These
problems demonstrate the sort of complex, pragmatic challenges that arise in applying Rotor to
real-world code.

Figures 5b and 5c show statistics that we collected for a number of metrics in both the succeeding
and failing test cases. Namely, the number of dependencies for each renaming, the number files in
the renaming footprint, the number of diff hunks in the resulting patch, and the average number
of such hunks per modified file. We show the maximum, mean and mode number in each case.
For most of the test cases, the number of files in the footprint is small, and there is only a single
change per file. In the successful test cases, the average number of dependencies for a refactoring
was 14, but a maximum of 92 was encountered. This gives some indication as to the degree of the
complexity and coupling that is present in the test-bed.

Themaximumnumber of dependencies generated for a failing test case was an order ormagnitude
greater than for succeeding test cases, and the average number was 4.5 times as great. Moreover,
although most commonly the computed footprint of a renaming was similar in both successful and
failing test cases, the average size of the footprint was slightly higher in the failing cases. Thus,
whilst we should not really conclude anything about the codebase or the renamings themselves
from the statistics of the failing test cases, they do appear to reflect the common sense expectation
that the more complex a renaming is, the ‘harder’ it is to get right.

7 RELATEDWORK

A general survey of refactoring up to 2004 is provided by Mens and Tourwé [2004], while Thompson
and Li [2013] specifically look at refactoring for functional languages such as Haskell and Erlang.
We mention other related work pertaining to more specific aspects of refactoring.

7.1 Preconditions and dependencies

From the beginning [Griswold and Opdyke 2015] researchers have known that it is not always
possible to perform a refactoring: there might be a set of preconditions, expressed as a set of logical
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properties, that have to hold before a refactoring can be performed successfully, that is without
changing the meaning of a program.
In some approaches—such as early versions of Eclipse—the preconditions are implicit. In the

simplest case, a regression test suite can be applied9 and if any test fails then the refactoring
is rejected. This is obviously a crude approximation to correctness, and will permit potentially
different programs to be accepted. A stronger test can be provided in some cases; for example, after
a renaming the binding structure of the refactored and original programs are compared, and unless
they are the same then the refactoring is rejected, with the attendant possibility of generating a
counterexample to witness how precisely it fails.
In other cases, as initially advocated by Opdyke [1992], the preconditions are tested statically,

that is without performing the refactoring. In practice the static preconditions will need to be
decidable, and that will generally require an approximation of the true conditions, thus potentially
excluding some valid refactorings.

How should the preconditions be made to hold? One design choice is to leave that to the person
refactoring the code, but an alternative is for the tool itself to compensate automatically and enable
the refactoring to go ahead; this is discussed in more detail by Thompson and Li [2013]. Of course,
in many cases there may well be more than one incompatible compensation, and so, in general,
we take the option of requiring manual preparation of the code to meet the precondition. Our
approach, in which we make explicit the dependencies of a particular refactoring, provides to the
person effecting the refactoring more detailed information, and at a higher level, than previous
approaches.

7.2 Implementing refactorings

A refactoring is a transformation of the representation of a source code program to generate another
source code program, governed by some conditions on its application. The fact that a readable and
recognisable program needs to be produced as output makes for some engineering difficulties, but
the key to ensuring that refactorings work as appropriate lies in the representation, which is often
modelled on the internal representations of programs within compilers. Tools typically use two
kinds of representation, as noted by Mens and Tourwé [2004]: an abstract syntax tree, typically
enhanced or annotated to include information about static semantics, types etc., and a graph
structure of some kind. The implementation of a refactoring will need to traverse these structures:
tree-structured systems will typically use something akin to strategic programming [Bravenboer
et al. 2008] that explicitly controls the application of transformations across the nodes of a tree,
while graph transformation systems [Heckel 1995] are used to describe refactorings over graphical
representations.

7.3 Queries and scripts

In evaluating preconditions it can be useful to represent information about a program in a data-
base, and to extract information using a query language. While SQL and Prolog can be used, the
most successful work here, resulting in the codeQuest tool [Hajiyev et al. 2005], uses Datalog to
extract information from a relational database. This approach underlies JunGL [Verbaere et al.
2006], which is a high-level language for describing Java refactorings; the language combines a
functional approach to transformations with the database of basic program facts. The paper gives
particular attention to the problems of renaming, and in doing this shows the queries required to
describe suitable preconditions for renaming. A higher-level approach to scripting refactorings is
exemplified by the DSL provided by Wrangler [Li and Thompson 2012]: this allows the construction

9Assuming that the tests themselves don’t need to be refactored!
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of composite refactorings built by putting together ‘atomic’ components, and the tool reports the
atomic refactorings performed by the application of a DSL script to a particular program.

7.4 Presenting refactorings

We argue in Section 4 that our dependencies represent a new way of presenting the effect of a
refactoring. The usual approach is to provide some sort of visualisation of the effect of a refactoring,
typically by means of a visual diff of the modules that have changed, as might be provided by an
online repository like github. A novel form of this, which makes optimal use of screen space, is to
use a pixel visualisation of a set of files, using one pixel per character in the files [Eick et al. 1992];
other techniques for displaying software changes are surveyed by Eick et al. [2002]. This issue
is relevant to our work because, as Kim et al. [2014] acknowledge, refactorings cause particular
problems for the process of code review; recent work on semantic code review by Menarini et al.
[2017] may offer some help here.

8 CONCLUSIONS AND FUTUREWORK

We have presented Rotor, a prototype refactoring tool for OCaml, implemented in OCaml itself,
that can carry out value binding renamings over large codebases. Furthermore, Rotor provides a
generic framework in which further refactorings for OCaml can be implemented and integrated
with one another. The design of Rotor is informed by an analysis of how the features of the
OCaml language create binding structure and induce dependencies between different program
subcomponents. This analysis has in turn led to the formulation of a novel, abstract notion of
‘dependency’ for refactoring. The complexities that we have identified in implementing renaming
highlight the expressiveness of theOCaml language. We have also evaluated Rotor on an extensive
test-bed consisting of real-world OCaml code.
There are many directions for future research. Firstly, Rotor should be extended to handle

renaming in the presence of language features such as anonymous modules, first class modules,
and module type extraction. Further development to better handle the difficulties presented by
PPX preprocessors should also be undertaken. Beyond this, more refactorings for OCaml need
to be implemented, including: renaming of other language elements (e.g. modules, module types,
types, type constructors, classes, named function arguments, function parameters, etc.); structural
refactorings such as adding and removing function arguments, type constructors, or class/object
methods; and more complex refactorings such as module promotion. To increase the usability of
Rotor, we could also support a scripting language for refactorings, as done for the Wrangler tool
[Li and Thompson 2012], and integrate it with IDEs in a similar way to the merlin tool.
On the theoretical side, we would like to undertake a more formal investigation of refactoring

dependencies and also investigate how the correctness of refactorings might be formally verified.
This could take advantage of the CakeML project [Kumar et al. 2014], which is a formally verified
implementation of a large subset of Standard ML in the HOL4 [2017] theorem prover.
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