Type Theories as Foundational Languages

Zhaohui Luo [罗朝晖]

Royal Holloway, Univ of London

Zhaohui.Luo@hotmail.co.uk

https://www.cs.rhul.ac.uk/home/zhaohui/

This talk – three parts

- I. Introduction to (modern) type theories [现代类型论]
 - History (simple/dependent), basics, logic, (im)predicativity, ...
- II. Type theories as foundational languages
 - Representational adequacy, meta-theory, equalities, ...
- III. Type theory for foundations of mathematics
 - ◆ Univalent foundations and homotopy type theory
 「单价基础与同伦类型论】

Part I. Modern Type Theories [现代类型论]

Origin of type theory

Foundations of mathematics and paradoxes

- Naïve set theory (Cantor, ...)
- Paradox in naïve set theory (Russell 1903)
- * Crisis in foundations of mathematics
- Set theory by Zermelo
 - * Axiomatic set theory (1908; later ZFC etc.)
 - Widely accepted foundations in math community
- Type theory by Russell
 - * Ramified type theory (*Principia Math.* 1910-13, 1925)
 - ✤ Vicious circle principle ("impredicativity" like ∀X.X)
 - Ramified hierarchy problematic "axiom of reducibility"

Simple type theory

Ramsey (1926)

- ✤ Logical v.s. semantic paradoxes
- Russell's paradox v.s. (e.g.) Liar's paradox
- Impredicativity is circular, but not vicious
- ✤ So, Russell's ramified TT can be "simplified" to simple TT.
- Church's simple type theory (1940)
 - * Formal system based on λ -calculus
 - ∗ Types as in ramified TT (e, t, e→t, ...)
 - ✤ Higher-order logic (formulas like ∀X.X)
 - * Wide applications (Montague semantics, proof assistants, ...)

Note: "Simple" could have another meaning: only "simple" types ...

Modern Type Theories

Foundations of constructive math (Bishop 67)

- * Feferman, Friedman, Martin-Löf, Myhill
- Martin-Löf has introduced/employed
 - Basic concepts:
 - judgements, contexts, definitional equality
 - Type constructors:
 - dependent types, inductive types, type universes
 - Curry-Howard principle of propositions-as-types
- From now on, by type theories, we mean Modern Type Theories (or MTTs),
 - rather than the simple type theory.

Judgements – basic notion in type theory

 Π -types: example of dependent types [*]

IIX:A.B(x) – dependent function type

- ♦ Informally, representing collection { $f \in A \rightarrow \bigcup_{a \in A} B(a) \mid \forall a \in A. f(a) \in B(a)$
- * f : Π x:Human.Parent(x) \rightarrow f(h) is father/mother of h (not others'!)

✤ Formally rules for Π-types

- ✤ Formation rule
- * Introduction rule
- * Elimination rule
- * Computation rule

 $\frac{\Gamma \vdash A \ type \quad \Gamma, \ x:A \vdash B \ type}{\Gamma \vdash \Pi x:A.B \ type}$ $\frac{\Gamma, \ x:A \vdash b : B}{\Gamma \vdash B}$

$$\overline{\Gamma \vdash \lambda x}:A.b:\Pi x:A.B$$

$$\frac{\Gamma \vdash f : \Pi x : A \cdot B \quad \Gamma \vdash a : A}{\Gamma \vdash f(a) : [a/x]B}$$

$$\Gamma, \ x : A \vdash b : B \quad \Gamma \vdash a : A$$

 $\overline{\Gamma \vdash (\lambda x : A.b)(a) = [a/x]b : [a/x]B}$

Relationship between logic and set/type theory

MLTT [Martin-Löf 1975] – predicative type theory

Propositions as types (Curry-Howard) in type theory:

0	1	A + B	$A \times B$	$A \rightarrow B$	$\sum_{x:A} B(x)$	$\prod_{x:A} B(x)$
\bot	Т	$A \lor B$	$A \wedge B$	$A \Rightarrow B$	$\exists_{x:A}B(x)$	$\forall_{x:A}B(x)$

- Note: √/∃ thus defined are non-standard "double role"
 problem: (1) "image(f)" in math [Escardo 17] (2) size in sem [Luo 18]
- MLTT is <u>predicative</u>.
 - Strictly hierarchical constructions.
 - * There is no impredicative type formation such as " $\forall X.X''$.

Predicativity v.s. Impredicativity

A type of all types

 ♦ Martin-Löf 1971: a (too strong) impredicative type theory with a type V of all types → Girard's paradox → inconsistency

✤ Analysis: the origin of V came from two ideas:

(1) All propositions form an (impredicative) type.

(2) props = types (not just PaT, but all types are props as well!)

You get V by substituting "types" for "propositions" in (1).

Predicative v.s. impredicative types theories:

- ↔ Insisting on (2) and disregarding (1) → predicative MLTT
- ♦ Following (1) and disagreeing with (2) → impredicative UTT (UTT next page)

UTT [Luo 89,94] – an impredicative type theory

UTT – Unifying theory of Dependent Types (MLTT + CC)

Data types:

 N, Π, Σ, \dots $Type_0, Type_1, \dots$

Logic: \forall , Prop

Fig. 1. The type structure in UTT.

UTT has nice meta-theoretic properties

- Goguen's PhD thesis on "Typed Operational Semantics" (1994)
- Strong normalisation, which implies, e.g., consistency etc.

 \forall -propositions: impredicative types [*]

Universal quantification in Prop

 $\frac{\Gamma \vdash A \ type \quad \Gamma, \ x:A \vdash P : Prop}{\Gamma \vdash \forall x:A.B : Prop}$

Other logical operators can be defined by

As in second/higher-order logics (c.f. Prawitz's work)

* For example, $P \land Q = \forall X : Prop. \ (P \Rightarrow Q \Rightarrow X) \Rightarrow X.$

 $\exists x : A. \ P(x) = \forall X : Prop. \ (\forall x : A.(P(x) \Rightarrow X)) \Rightarrow X.$

***** Formation of \forall is impredicative (different from Π -types)

- Prop, the collection of propositions, is a type itself.

Proof technology based on type theories

Proof assistants – interactive proof development MTT-based: Agda, Coq, Lean, Lego, NuPRL, Plastic, ... * HOL-based: HOL, Isabelle, Applications of proof assistants Formalisation of mathematics ✤ 4-colour theorem (Coq), Kepler conjecture (Isabelle) Univalent foundations of mathematics (Agda, ...) * Computer Science: program verification and advanced programming Computational Linguistics NL reasoning based on MTT-semantics (Coq)

Part II. Type Theories as Foundational Languages

- Foundational adequacy four aspects
 - (1) Basic representational adequacy
 (2) Meta-theoretical justifications
 (3) Various adequacy requirements in applications
 (4) Two notions of equality

1. Natural numbers: example of basic adequacy

- Peano axioms: logical theory for natural numbers. [N is a predicate and n ext{N} stands for N(n)]
 - $(P1) \ 0 \in N$
 - $(P2) \ \forall x. \ x \in N \Rightarrow succ(x) \in N$
 - $(P3) \ \forall x, y. \ x, y \in N \land succ(x) = succ(y) \Rightarrow x = y$
 - $(P4) \ \forall x. \ x \in N \Rightarrow 0 \neq succ(x)$

 $(P5) \ \forall P. \ P(0) \land [\forall x. \ x \in N \land P(x) \Rightarrow P(succ(x))] \Rightarrow \forall z. \ z \in N \Rightarrow P(z)$

Martin-Löf's idea

- Inductive types as "computational theories"
- Example Nat, the type of natural numbers

Rules for Nat

Formation and introduction rules (canonical nats)

Computation rules (primitive recursion)

$$\mathcal{E}_{Nat}(c,f,0) = c$$

$$\mathcal{E}_{Nat}(c, f, succ(n)) = f(n, \mathcal{E}_{Nat}(c, f, n))$$

Notes: All Peano axioms are either rules or theorems.

2. Meta-theoretic studies

Intuitive understanding based on computation:

Example: A = Nat, a = 3+4, v = 7.

 \bullet How to guarantee that computation $a \rightarrow v$ terminates ?

类型

Meta-theory

Meta-theory of type theories

- Computation is central.
 - Strong normalisation: All computations terminate.
 - This usually implies canonicity and logical consistency.
- * Sophisticated, tedious and rather hard to do
 - Many many theorems/lemmas/concepts/... [examples in next 2 slides]
- * ECC/UTT's meta-theoretic studies [Luo 1990, Goguen 1994]

Caveat:

- Meta-theory depends on consistency of meta-language (set theory) – believed to be true, but ...
- Desire/wish: can we argue for "correctness" directly? (meaning theory ..., not in this talk)

Meta-theoretic theorems: examples [*]

- ✤ Church-Rosser theorem (CR) [CR定理]
 - ∗ If a=b : A, then there exists c : A s.t. a → c and b → c.
- ✤ Subject Reduction (SR) [主题归约]
 - ↔ If a : A and a → b, then b : A.
- ✤ Strong Normalisation (SN) [强正规化]
 - Every computation from a well-typed term terminates.
- ✤ Logical consistency (in UTT) [逻辑相容性]
 - * \forall X:Prop.X (false) is not provable (in the empty context).
- ✤ Decidability (of type-checking) [(类型检测的)可判定性]
 - It is decidable whether a judgement is correct (derivable).
- ◆ Equality reflection [等式反射性质] (proof on next page omitted)
 - * In the empty context, a = b: A is correct if and only if $a =_A b$ is provable, where = is definitional and $=_A$ is propositional (Leibniz/Id).

Example proof: equality reflection (in empty ctxt) [*]

★ <u>Theorem</u>. |- a=b : A iff |- p : a =_A b for some p.
★ <u>Proof</u>. Necessity is straightforward. Sufficiency:

Let p : a=_Ab where be in normal form (by SN & SR).
By SN/SR, we may assume that p/a/b/A are in normal form.
Note that a=_Ab = ∀P:A→Prop.P(a)→P(b), so
p = λP:A→Prop. λx:P(a). M
Then, (by analysis) M = x : P(a) and hence |- P(a) = P(b).

✤ So, by CR, |- a = b : A.

3. Features and adequacy in applications

Type theory as a foundational language of ...

	Univalent Math	NL semantics
Extensionality/univalence		X
Proof Irrelevance	X	\checkmark
Higher Inductive Types	\checkmark	??
Subtyping	??	\checkmark

Example features

Extensionality

- ✤ Univalence (Voevodsky 2009): Id(A,B) \cong (A \cong B)
- [*] Proof irrelevance
 - * p, q : P → p = q, for any proposition P.
 - * Only possible if there's distinction between props and other types
- [*] Subtyping

* ...

- * A \leq B: every object of A can be regarded as an object of B.
- Subsumptive (inadequate) → coercive subtyping (Luo et al 2012)

4. Two notions of equality

Definitional equality (a = b : A)

Propositional equality (=_A -- "Leibniz"/Id)

- Why definitional equality?
 - Capturing computation (eg, for nats)
 - ★ Dependent typing: $(x \le 3+4) = (x \le 7)$ have the same objects.
- ✤ Equality reflection [等式反射性质] <u>usually</u>:
 - * <u>Theorem</u>. $\diamond \mid -a = b : A \Leftrightarrow \diamond \mid -p : (a =_A b)$ for some p.
 - See (Martin-Löf 73) for Id and (Martin-Löf 71/Luo 90) for Leibniz.
 Informally, definitional & propositional equalities "coincide".

"Sameness" in type theories

	Prog verification	NL semantics	Univalent Math
F 124			
Equality	$=$ and $=_{A}$	$=$ and $=_{A}$	(and equivalent Id)

Sameness":

- * <u>Usually</u> given by definitional/propositional equality $=/=_A$.
 - ✤ E.g., MTT-semantics for natural language; programming/verification.
- ✤ <u>Different</u> in some theories.
 - ◆ [Part III] In univalent foundations, type isomorphism
 is made equivalent to Id that becomes different from definitional equality =.

Part III Univalent foundations of mathematics [数学的单价基础]

Univalent Foundations – alternative to set theory

Vladimir Voevodsky (1966–2017)

- Russian mathematician; Fields medalist (2002);
- Worked on UF since 2005 (homotopy lambda calculus), and developed UF library in Coq from 2010.

V. Voevodsky. An experimental lib of formalized math based on UF. MSCS, 2015.

Voevodsky's key motivations and ideas

- Proof-checking we need foundations that make it possible.
 Errors in his own papers, only discovered/confirmed 15/20 yrs later ...
- ✤ Groupoid [群胚] conception for higher dimensional math.
 - Groupoids, rather than categories, are "sets in the next dimension".
- H-levels (homotopy levels of n-types) [Voevodsky 2010]
 - Propositions, sets, groupoids, ... (e.g., sets as types of h-level 2)
 - Voevodsky: UF "is the first adequate formalization of set theory" (2014)

Homotopy type theory (HoTT 2013)

Development of HoTT

- Formalisation of univalent foundations
- Special year on univalent foundations of math.
 2012-13 at Inst of Advanced Study, Princeton, USA.

Hott = MLTT + UA + HITs

- ✤ UA univalence axiom [单价公理]
 - Univalence may be understood as generalised extensionality.
- ✤ HITs higher inductive types [高等归纳类型]
 - Extensional concepts such as quotients as types (omitted in this talk)

Phil of Math in China, 2024

Homotopy Type Theory

Univalence (Voevodsky 2006~2009)

♦ Univalence axiom (\cong /Id for equivalence/identity of types):

 $(\mathsf{U}\mathsf{A})\qquad \mathsf{Id}(\mathsf{A},\mathsf{B})\cong (\mathsf{A}\cong\mathsf{B})$

- ✤ Informally: isomorphic/equivalent types are equal.
- Mathematical structuralism (invariance under equivalence)
- ✤ Theorem (Voevodsky). MLTT with (UA) is consistent.

UA is "unusual"

- * E.g., $AxB \cong BxA$ they are isomorphic (have the same cardinality).
- ✤ Justification: equivalent types have same "internal properties".
- UA implies extensionality (functional & propositional)
 - * Note: Mathematics is extensional! (Other fields may not be.)
- Comparison with set theory (again):
 - * Extensionality: type theory is intensional & set theory extensional.
 - ✤ Univalence: such "structuralism" is absent in set theory.

Cubical type theory [*]

UA as an <u>axiom</u> (as in HoTT) – problematic!

- ✤ Some "natural numbers" don't compute to canonical ones ...
- ✤ Correctness/adequacy of the foundational language is in doubt …!
- ✤ Cubical type theory [立方类型论]
 - Started in 2012-13 at Princeton, by Coquand (TYPES15, LICS18), when Voevodsky had the conjecture: canonicity holds.
- Univalence is a <u>theorem</u> in the cubical type theory.
 - Canonicity for nats holds a big step forward!
 - Normalisation and decidability? (to be proved)
- Q: Is the cubical type theory the correct solution?

Analysis & comments from one angle [*]

- First, a comment on current philosophical analysis
 - Some (most?) are superficial (not as deep, at least), except:
 - Centrone et. al (eds.) Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory and General Thoughts. Springer 2019.
- Maddy's analysis on "foundational roles" (2019, in book above)
 - Compared with set theory, category theory & univalent foundations only "add" a new foundational role/goal, resp.
 - Category theory (CT) by "essential guidance"
 - Univalent foundations (UF) by "proof checking"
- Concerning univalent foundations, this may have overlooked:
 - * Mathematical structuralism
 - * Foundations as "practical tool" for working mathematician

Research monograph on MTTs in Chinese

罗朝晖:现代类型论的发展与应用。 清华大学出版社,2024年。

Z. Luo. Modern Type Theories: Their Development and Applications. Tsinghua Univ Press, 2024. (In Chinese)

网址: http://www.tup.tsinghua.edu.cn/booksCenter/book_09109701.html